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Delaunay TriangulationDelaunay Triangulation
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TriangulationsTriangulations
 A triangulation of a set S of points in the plane is a 

partition of the convex hull of the set into triangles 
whose vertices are the points and do not containwhose vertices are the points, and do not contain 
other points.  (Why is there always a triangulation?!)

 An alternative definition:  A maximal collection of line-
segments inside CH(S) whose endpoints are points  
of S.  (These segments form the triangles.)

 There are an exponential number of triangulations of a 
point set.  Best known bound:  O(59n), where n is the 

b f i [S d S id l 2003] H
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number of points [Santos and Seidel, 2003].  Hot 
update (June 2006):  O(43n)  [Sharir and Welzl, 2006].
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MotivationMotivation
 Assume a height value is associated with each point. 

 A triangulation of the points defines a piecewise-
linear surface of triangular patcheslinear surface of triangular patches.
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2D 3D

PiecewisePiecewise--Linear InterpolationLinear Interpolation

 The height of a point P inside a triangle is determined 
by the height of the triangle vertices, and the location 
of Pof P.

 The result depends on the triangulation.

0

0

0

>0
0

0

0

>0

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 4

P P

0
0

0

0

>0
0

0

0

0

0



3

Barycentric CoordinatesBarycentric Coordinates

 Any point inside a 
triangle can be 
e pressed niq el as

v3

expressed uniquely as 
a convex combination 
of the triangle vertices:
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An O(An O(nn33))--Time Triangulation AlgorithmTime Triangulation Algorithm

 Repeat
Select two sites.

If th d ti th d t i t t i lIf the edge connecting them does not intersect previously 
kept edges, keep it.

Until all faces are triangles.

 Question:  Why O(n3) time?

 Question:  Why is the algorithm                  
guaranteed to stop before                                 
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running out of edges?

 Answer:  Because every nontriangular                   
face has a diagonal that was not processed yet.  
(Why?!)

An O(An O(n n log log nn))--Time Triangulation AlgorithmTime Triangulation Algorithm

 Construct the convex hull of the points, and connect 
one arbitrary vertex to all others.

 Insert the other sites one after the other Insert the other sites one after the other…

 Two possibilities:
Point inside a triangle:    
One triangle becomes three.
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Point on an edge:           
Two triangles become four.

QuestionQuestion:             :             
Why O(Why O(nn log log nn) time?) time?



5

Number of TrianglesNumber of Triangles

 The number of triangles t in a triangulation of n points 
depends on the number of vertices h on the convex 
h ll t (h 2) + 2(n h) 2n h 2hull:  t = (h-2) + 2(n-h) = 2n-h-2 .

n = 8
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h = 6   t = 8 h = 5   t = 9

Quality TriangulationsQuality Triangulations
 Consider a triangulation T.

 Let (T) = (1, 2, …, 3t) be the vector of angles in 
the triangulation T sorted in increasing orderthe triangulation T sorted in increasing order.

 A triangulation T1 is “better” than T2 if (T1) > (T2) 
in a lexicographically order.

 The Delaunay triangulation is the “best” (avoiding, 
long skinny triangles, as much as possible).
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Good: Bad:
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Thales’s TheoremThales’s Theorem

 Theorem:

Let C be a circle, and ℓ a line intersecting C at the 
points a and b.  Let p, q, r, and s be points lying on the 
same side of ℓ, where p and q are on C, r inside C, 
and s outside C.  Then:

 Proof omitted.
q

asbaqbapbarb 

p

s
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(Thales proved the theorem                               
directly; one can deduce it                                       
from the sine theorem.)

p
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Improving a TriangulationImproving a Triangulation

 In any convex quadrangle, an edge flip is possible.  
(Why?  Why isn’t it possible in a concave triangle?)

 Claim:  If this flip improves the triangulation locally, it 
also improves the global triangulation.  (Why?)
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 If an edge flip improves the triangulation (locally and 
hence globally), the original edge is called illegal.
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Illegal EdgesIllegal Edges
 Lemma: An edge pq is illegal iff any of its opposite 

vertices is inside the circle defined by the other three 
verticesvertices.

 Proof:  By Thales’s theorem.

Moreover, a convex                                     
quadrangle in general position                                
has exactly one legal diagonal.

 Theorem: A Delaunay triangulation does not contain 
ill l d (Oth i it b i d l ll )
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illegal edges.  (Otherwise it can be improved locally.)

 Corollary: A triangle is Delaunay iff the circle 
through its vertices is empty of other sites.

 Observation: The Delaunay triangulation is not     
unique if more than three sites are cocircular.

An An ((nn44))--Time Delaunay TriangulationTime Delaunay Triangulation

 For all triples of sites pqr :
If the circle through p,q,r does not contain any other site,If the circle through p,q,r does not contain any other site, 
keep the triangle pqr.

 Complexity:  (n3) triples, (n) work per triple;

Total:  (n4) time.

(Space complexity: (n) )
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(Space complexity:  (n).)
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The InThe In--Circle TestCircle Test
Theorem:  If a,b,c,d form a CCW 
convex polygon, then d lies in the 
circle determined by a, b, and c iff:
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Proof:
We prove that equality holds if the points are cocircular.
There exists a center q
and radius r such that:
Similarly for b, c, d.

In vector notation:
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In vector notation:

So these four vectors are linearly dependent, and hence their       
determinant vanishes.

Corollary: d(a,b,c) iff b(a,c,d) iff c(b,a,d) iff a(b,c,d).
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Naive Delaunay AlgorithmNaive Delaunay Algorithm
 Start with an arbitrary triangulation.

 Flip any illegal edge until no more exist.
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Naive Delaunay Algorithm  (cont.)Naive Delaunay Algorithm  (cont.)

 Question:  Why does the algorithm terminate?

 Answer:  Because every flip increases the vector 
angle, and there are finitely-many such vectors.

 However, this algorithm is in practice very slow.

 Question:  Why does the algorithm converge to the 
optimum triangulation?

 Answer: Because there are no local maxima (proof
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 Answer:  Because there are no local maxima (proof 
deferred).

Delaunay Triangulation by DualityDelaunay Triangulation by Duality
 Draw the Delaunay graph (the dual graph of the Voronoi 

diagram) by connecting each pair of neighboring sites in 
the Voronoi diagram.

 If no four points are cocircular, then all faces                 
in the Delaunay graph are triangles.

 General position assumption:                                   
There are no four cocircular points.

We need to prove:
Correctness of this duality.  I.e., drawing                                  
the Delaunay graph with straight segments
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the Delaunay graph with straight segments                           
does not cause any segment intersection.
This triangulation indeed maximizes the angle                    
vector (and, hence, it is the Delaunay triangulation).

 Corollary: The Delaunay triangulation (DT) of              
n points can be computed in O(n log n) time.
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Proof of Planarity of Delaunay TriangulationProof of Planarity of Delaunay Triangulation

 Let S be a set of sites, and let                                   
DT(S) be the dual graph of VD(S).

pj

 Let pipj be an edge of DT(S).                                        
It is so because cells of pi and pj

in VD(S) are neighbors in VD(S).                                   
Hence, there exists an empty circle                   
passing through pi,pj and whose center                      
oij is on their bisector (the edge of VD(S)            
separating between the cells of p and p )

pi

oij
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separating between the cells of pi and pj).

 Assume for contradiction that pipj intersects another 
edge pkpl in DT(S).

 Observe the possible interactions between the 
triangles oijpipj and oklpkpl… (next slide)

Planarity Proof  (cont.)Planarity Proof  (cont.)
 Case A (one triangle contains a yellow         

vertex of the other triangle):
Impossible, since the circumscribing circle of    

pj pk

ploij

o
the first triangle is empty, hence also the triangle.

 Case B (no triangle contains a vertex of the   
other triangle):
Cannot avoid an intersection of a pair of               
white edges, which is impossible, because       
the white edges are fully contained in

pi

okl
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the white edges are fully contained in        
disjoint Voronoi cells.

 Case C (one triangle contains a green         
vertex of the other triangle) is possible.
Question:  Why isn’t it a contradiction?
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Delaunay Triangulation:  Main PropertyDelaunay Triangulation:  Main Property
 Theorem:

Let S be a set of points in the plane.  Then,
(i) S ti f t i l (f ) f DT(S)(i)  pi,pj,pkS are vertices of a triangle (face) of DT(S)

 The circle passing through pi,pj,pk is empty;
(ii) pi,pj (for pi,pjS) is an edge of DT(S)

 There exists an empty circle passing
through pi,pj.

 Proof:  Dualize the Voronoi-diagram theorem.
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 Corollary:
A triangulation T(S) is DT(S)

 Every circumscribing circle of
a triangle T(S) is empty.

Wrapping UpWrapping Up

 Theorem:

Let S be a set of points in the plane, and let T(S) be a 
triangulation of S.  Then,

T(S) = DT(S)    T(S) is legal.

 Proof:  Follows from the definitions of a legal edge and 
triangulation.  (Exercise!)

 Corollary: DT(S) maximizes the vector angle
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 Corollary:  DT(S) maximizes the vector angle.

 Since DT(S) is unique, there is only one legal triangulation, 
and thus, there are no local maxima in the edge-flip 
algorithm.  Hence, the algorithm converges to DT(S).
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An O(An O(n n log log nn))--Time Delaunay AlgorithmTime Delaunay Algorithm
A Randomized incremental algorithm: 
 Form a bounding triangle 0 enclosing all points.
 Add the points one after another in a random Add the points one after another in a random        

order and update the triangulation.
 If the point is inside an existing triangle:

Connect the point to the triangle vertices.
Check if a flip can be performed on any of the              
three triangle edges.  If so, flip the edge and                
check recursively the neighboring edges                
(opposite to the new point)
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(opposite to the new point).

 If the site is on an existing edge:
Replace the edge with four new edges.
Check if a flip can be performed on any of the         
opposite edges.  If so, flip the edge and check recursively 
the neighboring edges (opposite to the new point).

Flipping EdgesFlipping Edges

 A new point pr was added, causing the 
creation of the edges pipr and pjpr .g i r j r 

 The legality of the edge pipj (with  
opposite vertex) pk is checked.

 If pipj is illegal, perform a flip, and 
recursively check edges pipk and            
pjpk, the new edges opposite to pr .

 Notice that the recursive call for pipk

pi

pr

pj
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 Notice that the recursive call for pipk

cannot eliminate the edge pr pk.

 Note:  All edge flips replace edges 
opposite to the new vertex by edges 
adjacent to it!

pk
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Flipping Edges:  ExampleFlipping Edges:  Example

pr

pi

pj

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 25

pk

Number of TrianglesNumber of Triangles
 Theorem: The expected number of triangles created    

in the course of the algorithm (some of which also 
disappear) is at most 9n+1.

 Proof:
During the insertion of point pi, ki new edges are created:     
3 new initial edges, and ki-3 due to flips.  Hence, the 
number of new triangles is at most 3+2(ki-3) = 2ki-3.     
(A point on an edge results in 2ki-4 triangles.)

What is the expected value of ki?

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 26



14

Number of Triangles  (cont.)Number of Triangles  (cont.)

 Recall that the Voronoi diagram has at most 3N - 6 edges, 
where N is the number of vertices.

 The number of edges in a graph and its dual are identical.

 Taking into account the initial triangle 0, after inserting i
points, there are at most 3(i+3) - 6 = 3i + 3 edges.

Three of them belong to 0, so we are left with at most 3i
internal edges that are adjacent to the input points.
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Number of Triangles  (cont.)Number of Triangles  (cont.)
 The sum of all vertex degrees is thus at most 2·3i = 6i.
 On the average, the degree of each vertex is only 6 ! 

But this is exactly the number of new edges!
 Hence, the expected number of triangles created in the 

i th step is at most  E(2ki - 3) = 2 E(ki) - 3 = 9.
 Therefore, the expected number of triangles created 

(and possibly destroyed) for n points is 9n + 1.           
(One initial bounding triangle plus 9 triangles on 
average per point.)
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Algorithm ComplexityAlgorithm Complexity

 Point location for every point:  O(log n) time (not shown).

 Flips: (n) expected time in total (for all steps) Flips:  (n) expected time in total (for all steps).

 Total expected time:  O(n log n).

 Space:  (n).
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Relatives of the Delaunay TriangulationRelatives of the Delaunay Triangulation

 Euclidean Minimum Spanning Tree (EMST):       
A tree of minimum length connecting all the sites.

 Relative Neighborhood Graph (RNG):             
Two sites p, q are connected if

 Gabriel Graph (GG):                                           
Two sites p, q are connected if the circle whose 

, ,
( , ) min max( ( , ), ( , ))

r P r p q
d p q d p r d q r

 

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p, q
diameter is pq is empty of other sites.

 Theorem:  EMST  RNG  GG  DT .
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Delaunay Triangulation and Convex HullsDelaunay Triangulation and Convex Hulls

2 2 2 2z=x2+y2 z=x2+y2 z=x2+y2
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Project the 2D point set
onto the 3D paraboloid

The 2D triangulation is Delaunay!

Compute the 3D 
lower convex hull

Project the 3D facets
back to the plane.

Proof of LiftProof of Lift--Up MethodUp Method

 The intersection of a plane with the 
paraboloid is an ellipse whose 
projection to the plane is a circleprojection to the plane is a circle.

 s lies within the circumcircle of p,q,r
iff s’ lies on the lower side of the 
plane passing through p’,q’,r’. r’

p’
q’

s’
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 p,q,r  S form a Delaunay triangle 
iff  p’,q’,r’  form a face of the convex 
hull of S’.

pq

r
s
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More about Lifting UpMore about Lifting Up

 Given a set S of points in the                                 
plane, associate with each                                      p ,
point p=(a,b)S the plane                                             
z = 2ax+2by-(a2+b2), which is                             
tangent to the paraboloid at                                         
p’, the vertical projection of p
onto the paraboloid.

q

p’q’
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 VD(S) is the vertical projection                                    
onto the XY plane of the boundary                               
of the convex polyhedron that is the                    
intersection of the halfspaces above these planes. 

pq


