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On the AgendaOn the Agenda

 The Crossing-Number Lemma

 Applications to combinatorial problems
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Historical PerspectiveHistorical Perspective
Paul Erdős (born 1913 in Hungary, died 1996) was one 
of the greatest mathematicians of the 20th century.  He 
published thousands of research papers during aboutpublished thousands of research papers during about 
70 years, most of which attacked problems in 
combinatorial geometry.  Due to their difficulty, they 
were nicknamed “Hard Erdős Problems.”  In 1982/3, 
the so-called crossing-number lemma, motivated by 
optimization problems in chip design, was proven.  
Only in 1998 Székely discovered that many hard Erdős 
problems can be solved (at least partially but yielding

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
3

problems can be solved (at least partially, but yielding 
no worse bounds) by ridiculously simple applications of 
this lemma.  This opened a new era in combinatorial 
geometry, e.g., for proving a mile-stone upper bound 
on the complexity of the kth level in an arrangement    
of n lines.

The Crossing NumberThe Crossing Number

 The crossing number of a graph G, #cr(G), is the 
minimum number of edge crossings in a planar g g p
drawing of G.

 Corollary of Euler’s formula:  In every simple* planar 
graph  e  3v-6  (where e and v are the numbers of 
edges and vertices, respectively).

 Hence a graph in which  e > 3v-6  cannot be planar.  
For example:
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v = 5
93v-6 = 

e = 10
#cr = 1
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The CrossingThe Crossing--Number LemmaNumber Lemma

 [Ajtai, Chvátal, Newborn, and Szemerédi, 1982]  and

[Leighton, 1983].                                               [ g ]
Originally proven by induction on the graph complexity.

 Let G be a simple graph with v vertices and e  4v
edges.  Then:

 Remark:  “Simple” means
No parallel edges;

)/()(cr# 23 veG 
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No parallel edges;

No self edges.

A Probabilistic Proof  A Probabilistic Proof  ((ChazelleChazelle, , SharirSharir, , WelzlWelzl))

 Consider a planar embedding of a graph with v vertices,    
e edges, and c = #cr pairs of crossing edges.

 By Euler’s formula c  e–(3v–6) > e–3v (Why?) By Euler s formula  c  e–(3v–6) > e–3v.  (Why?)

 Choose a random subset of the vertices, each vertex with 
probability p (to be defined later).

 The expected number of vertices, edges, and crossings in 
the induced subgraph are pv, p2e, and p4c, respectively. 

 That is,  p4c > p2e – 3pv  (why?).  Hence,  c > e/p2 – 3v/p3. 
Ch i 4 / (th 0 1) i ld
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Choosing  p = 4v/e (thus, 0  p  1) yields                          
c > e3 / (16v2) – 3e3 / (64v2) = e3 / (64v2).

 Question:  Why at all is this a proof?

 The constant can be improved (enlarged) from             
1/64=0.0156… to 4/135=0.0296… (even more).
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Application I:  Segment IntersectionsApplication I:  Segment Intersections

 Given a complete graph G with n points in the plane 
in general position (no three collinear points).

 Problem:  What is the crossing number of G?

 Simple upper bound: O(n4) intersections.  (Why?)

 Lower bound (by the lemma):

 That is, the solution is a tight bound of (n4).

 Question: Why can we apply the lemma?

    423 2 / nnn 
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 Question:  Why can we apply the lemma?

 Question:  Does it matter if the graph                         
is geometric?  (A geometric graph is                     
made of straight line-segments only.)

Application II:  PointApplication II:  Point--Line IncidencesLine Incidences
 Let P be a set of n distinct points and L a set of ℓ

distinct lines. 
 An incidence of P and L is a pair (p,q), where p  P,p (p,q), p ,

q  L, and p lies on q.  #i(P,L) is the number of such 
incidences.

 The minimum possible value of #i(P,L) is obviously 0.

n = 6
ℓ = 2
#i = 6
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p ( ) y
What is the maximum possible value of #i(P,L)?
 Clearly, #i = O(nℓ).  Can we do better?

 Theorem:
(note the role of the (n+ℓ) term)

))((Oi# 3/2   nn
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Proof of the P/LProof of the P/L--I TheoremI Theorem

 For a given point-set P and line-set L, construct a graph 
in which each point in P is a vertex, and an edge 
connects every pair of consecutive points along a line 
of L.
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 For each line q,  e(q) = v(q)–1.  (Why?)

 Sum up over all lines in L to obtain  e = #i–ℓ.  (Why?)

 Trivially, in the graph  #cr  ℓ2.  (Why?)

Proof of the P/LProof of the P/L--I Theorem  (cont.)I Theorem  (cont.)

Case 1:  e  4n

4 #i ℓ

Case 2:  e  4n

# ( 3/ 2) ((#i ℓ)3/ 2)

e = #i–ℓ

 4n  #i–ℓ

 #i  4n+ℓ

 #i = O(n+ℓ)

#cr = (e3/n2) = ((#i–ℓ)3/n2)

#cr = O(ℓ2)

 (#i–ℓ)3 = O(n2ℓ2)

 #i = O((nℓ)2/3+ℓ)
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))((Oi# 3/2   nn

Note:  in the special case  Note:  in the special case  ℓ = n,  #i = O(n4/3).
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Application III  (Number Theory)Application III  (Number Theory)

 Let A be a set of n distinct integer numbers.

 A A+A i th t f i t t d b lti l i t AA+A is the set of integers created by multiplying two 
elements from A, and adding another element.

 Clearly,

k = |AA+A| = (n)  (but not completely trivially, since,       
e.g., (-2)(-2)+(-2) = 11+1, so why?), 

and
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k = O(n3).  (Why?)

 How small can k really be?

SolutionSolution
 Let S be a set of points:  S = {(x,y) | xA, yAA+A}.

Obviously, |S| = nk.

 Draw all the lines of the form  y=aix+aj,  where  ai,aj  A.

 Observations (justify!):

1. There are exactly n2 such lines;

2. Each such line passes through exactly n points of S.

 Therefore, #i = n3.
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Applying the CrossingApplying the Crossing--Number LemmaNumber Lemma

 Recall:  nk points, n2 lines.

 According to the point/line-incidences theorem,          
3 2 2/3 2 2 2/3 2n3 = #i = O(((nk)n2)2/3 + n2 + nk) = O(n2k2/3 + n2 + nk).

 But:  n2 = O(n2k2/3)  and  
k  n3   k1/3  n  nk  n2k2/3    !

 That is,

n3 = O(n2k2/3)    k2/3 = (n)    k = (n3/2).

So these two terms 
are redundant!



xx⅓⅓ nknk⅔⅔
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