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Computational GeometryComputational Geometry
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Basic TechniquesBasic Techniques
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On the AgendaOn the Agenda

 Line Segment Intersection

 Plane Sweep

 Euler’s Formula
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 The determinant is twice the area of the triangle whose 
vertices are the rows of the matrix.

Triangle OrientationTriangle Orientation
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 The sign of the result indicates the orientation of the 
vertices.
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vertices.

 Positive triangle  counter-clockwise direction  left turn.

 Negative triangle  clockwise direction  right turn.
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LineLine--Segment IntersectionSegment Intersection

 Theorem: Segments (p1,p2) and (p3,p4) 
intersect in their interiors if and only if

d diff t id f th li

p4

p2

p1 and p2 are on different sides of the line p3p4;
and
p3 and p4 are on different sides of the line p1p2.

 This can be checked by computing the 
orientations of  four triangles.  Which?

p3

p1
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 Special cases:

Computing the IntersectionComputing the Intersection
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Question:  What is the meaning of other 
values of s and t?

Solve (2D) linear vector equation for t and s:
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Point in PolygonPoint in Polygon

 Given a polygon P with n sides, and 
a point q, decide whether qP.

q

 Solution A:  Count how many times a ray 
from q to infinity intersects the polygon.

qP if and only if this number is odd. 

P
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 Time complexity:  (n)

 Question: Are there any special cases?

Point in Polygon (cont.)Point in Polygon (cont.)

P

 Solution B:  Sum up the angles 
i=piqpi+1 for i=0,..,n-1 (n0 mod n)

P

q

 Sum = 2 iff qP (otherwise Sum = 0)

 Note:  Some angles are negative.
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 Time complexity:  Θ(n)

 Question: Can the problem be solved in less 
time if P is convex?



5

PlanePlane--Sweep ParadigmSweep Paradigm
 Problem:  Given n line-segments in 

the plane, compute all their 
intersectionsintersections.

 Variant:  Report # of intersections.
 Another variant:  Is there any pair 

of intersecting segments?
 Assumptions:

No line segment is vertical.
No two segments overlap in more than 
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g p
one point.
No three segments intersect at a 
common point.

 Naive algorithm:  Check each pair of segments for 
intersection.  Complexity:  (n2) time, (n) space.  

SegmentSegment--Intersection AlgorithmIntersection Algorithm
 An event is any endpoint or 

intersection point.
 Sweep the plane from left to right Sweep the plane from left to right 

using a vertical line.
Maintain two data structures:

Event priority queue:  sorted by x
coordinate.
Sweep-line status:  stores segments 
currently intersected by the sweep line, 
sorted by y coordinate
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sorted by y coordinate.
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Basic IdeaBasic Idea

We are able to identify all intersections by 
looking only at adjacent segments in the 
sweep line status during the sweep

Theorem: Just before an intersection 
occurs (infinitesimally-close to it), the two 
respective segments are adjacent to each 
other in the sweep-line status.

sweep line status during the sweep.
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In practice: Look ahead: whenever two 
line segments become adjacent along the 
sweep line, check for their intersection to 
the right of the sweep line.

Detailed AlgorithmDetailed Algorithm

 Initialization: 
Put all segment endpoints in the event queue, sorted 
according to x coordinates Time: O(n log n)according to x coordinates.  Time:  O(n log n).

Sweep line status is empty.

 The algorithm 
proceeds by 
inserting, deleting, 
and handling 
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g
discrete events 
from the queue 
until it is empty.
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Detailed Algorithm  (cont.)Detailed Algorithm  (cont.)

 Event of type A:  Beginning of a 
segment (left endpoint)segment (left endpoint)

Locate segment position in the status.

Insert segment into sweep line status.

Test for intersection to the right of the 
sweep line with the segments 
immediately above and below.  Insert 
intersection point(s) (if found) into the 
event queue
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event queue.

 Time complexity:

n events, O(log n) time for each
 O(n log n) in total.

Detailed Algorithm  (cont.)Detailed Algorithm  (cont.)

 Event of type B:  End of a segment 
(right endpoint)(right endpoint)

Locate segment position in the status.

Delete segment from sweep line status.

Test for intersection to the right of the 
sweep line between the segments 
immediately above and below.  Insert 
intersection point (if found, and if not 
already in the queue) into the event
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already in the queue) into the event 
queue.

 Time complexity:

n events, O(log n) time for each 
 O(n log n) in total.
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Detailed Algorithm  (cont.)Detailed Algorithm  (cont.)
 Event of type C:  Intersection point

Report/count the point.
Swap the two respective lineSwap the two respective line     
segments in the sweep-line status.
For the new upper segment:  Test it for 
intersection against the segment above 
it in the status (if exists).  Insert 
intersection point (if found, and if not 
already in the queue) into the event 
queue.
Do a similar action for the new lower
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Do a similar action for the new lower 
segment (check against the segment 
below it, if any).

 Time complexity: 
k such events, O(log n) each

 O(k log n) in total.

k is thek is the
output sizeoutput size
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s0,s1,s2,s3

a4, b1, b2, b0, b3, b4

Sweep Line 
Status

Event 
Queue

a1 a0
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Example  (cont.)Example  (cont.)
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Insert s4 to status

Test s4-s3 and s4-s2. Add e1 to event queue

s0,s1,s2, s4, s3

b1, e1, b2, b0, b3, b4

Action 

Sweep Line 
Status

Event 
Queue

a1 a0

Example  (cont.)Example  (cont.)
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Delete s1 from status

Test s0-s2. Add e2 to event queue

s0,s2,s4,s3

e1, e2, b2, b0, b3, b4

Action 

Sweep Line 
Status

Event Queue

a1 a0
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Example  (cont.)Example  (cont.)
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Swap s3 and s4 .

Test s3-s2.

s0,s2,s3,s4

e2, b2, b0, b3, b4

Action 

Sweep Line 
Status

Event Queue

a1 a0

Complexity AnalysisComplexity Analysis
 Basic data structures:

Event queue:  heap
Sweep line status:  balanced binary treep y

 Each heap/tree operation requires O(log n) time.
(Why is O(log k) = O(log n) ?)

 Total time complexity:  O((n+k) log n).
If kn2 this is slightly worse than the naive algorithm!
But if  k=o(n2/log n)  then the sweep algorithm is faster.
Note:  There exists a better algorithm whose running    
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time is (n log n + k).
 Total space complexity:  O(n+k).

Question:  How can this be improved to O(n)?
(Hint: Which events are [temporarily] redundant               
in the queue?)
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Graph DefinitionsGraph Definitions

G = <V,E>
V = vertices = 
{A,B,C,D,E,F,G,H,I,J,K,L}
E = edges =E = edges = 
{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),
(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),
(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),
(J,L),(J,K),(K,L),(L,I)}

Vertex degree (valence) = number of edges incident on vertex.
deg(J) = 4, deg(H) = 2

k l h h h ti ll h d k

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 21

k-regular graph = graph whose vertices all have degree k

A face of a planar graph is an empty cycle of vertices/edges.
F = faces = 
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I),
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G),(A,B,C,D,E,F,G,H)}

ConnectivityConnectivity

A graph is connected if there is a path of edges 
connecting every two vertices.

A graph is k-connected if between every two 
vertices  there are k edge-disjoint paths.

A graph G’=<V’,E’> is a subgraph of a graph 
G=<V,E> if V’ is a subset of V and E’ is the subset 
of E incident on V’. 

A connected component of a graph is a maximal 
connected subgraph.
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A subset V’ of V is an independent set in 
G if the subgraph it induces does not contain 
any edges of E.
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Graph EmbeddingGraph Embedding

A graph is embedded in Rd if each vertex is 
assigned a position in Rd.
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Embedding in R2 Embedding in R3

Planar GraphsPlanar Graphs

B

Planar Graph Plane Graph

A

B

C

D

A

B

C

D

B

Straight-Line Plane Graph

A planar graph is a graph 
whose vertices and edges can
be embedded in R2 such that 
its edges do not intersect.

Theorem:  Every planar graph
can be drawn as a straight-line
plane graph.
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TriangulationTriangulation

A triangulation of a point set is a straight-line
plane graph whose (finite) faces are allp g p ( )
triangles.  (Triangulation of the CH of the set.)

The Delaunay triangulation of a set of
points is the unique set of triangles such
that the circumcircle of any triangle does
not contain any other point. 
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The Delaunay triangulation avoids long 
and skinny triangles.

MeshesMeshes
A

B C

D

I

LJ M

Boundary edge: adjacent to exactly one face.
Regular edge: adjacent to exactly two faces

A mesh is a straight-line graph embedded in R3.

E

F

K
H

G

Regular edge: adjacent to exactly two faces.
Singular edge: adjacent to more than two faces. 

Closed mesh: mesh with no boundary edges.
Manifold mesh: mesh with no singular edges. Corners  V x F

Half-edges  E x F
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Closed ManifoldManifold with BoundaryNon-Manifold
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Planar Graphs and MeshesPlanar Graphs and Meshes

Every manifold mesh is planar !!
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Flatten !!Head

TopologyTopology
A

B C

D

E

I

L

K

J

H

v =12
f = 14
e = 25
c = 1

The genus of a graph is half of
the maximal number of closed paths

that do not disconnect the graph
(the number of “holes”).

Euler-Poincaré Formula

For a planar graph:

f 2( )

E

F

H

G

c  1
g = 0
b = 1 

(the number of holes ).

Genus(sphere) = 0
Genus(torus) = 1
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v+f-e = 2(c-g)-b

v = # vertices c = # conn. comp.
f = # faces g = genus
e = # edges b = # boundaries
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ExamplesExamples

Genus 0 Genus 1
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Genus 2

ExercisesExercises

Theorem: In a closed manifold 
triangle mesh, the average vertex
degree is ~6.

Proof: In such a mesh, f = 2e/3. 
By Euler’s formula: v+2e/3-e = 2-2g
hence e = 3(v-2+2g) and f = 2(v-2+2g).

So Average(deg) = 2e/v = 6(v-2+2g)/v 
~ 6 for large v. 

Corollary:  Only a toroidal (g=1) 
closed manifold triangle mesh can be 

Does Euler’s theorem imply that any
planar graph has an independent set 

of size at least ¼ n ?
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g
regular (all vertex degrees are 6).

Proof: In a regular mesh the average 

degree is exactly 6. This can happen

only if g=1.
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Euler’s FormulaEuler’s Formula

 For a connected planar 
graph with E edges, V
ertices and F faces the

V = 9
E 9vertices, and F faces, the 

following relation holds:

V-E+F = 2

E = 9
F = 2
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The Linearity RelationThe Linearity Relation
 Theorem: In a planar graph, E = O(V) and F = O(V).

 Proof: 
We may assume that the graph is maximally triangulated (this may only 
increase E and F). 

Every face is bounded by 3 half-edges  3F = 2E  E=3F/2

By Euler’s formula: V-E+F = 2   V-3F/2+F = 2   F = 2(V-2) = O(V)

Similarly, F = 2E/3   V-E+2E/3=2   E = 3(V-2) = O(V)

V 10

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 32

V=10
E=24
F=16


