
1

Computational GeometryComputational Geometry

Chapter Chapter 22

Basic TechniquesBasic Techniques

1

On the AgendaOn the Agenda

 Line Segment Intersection

 Plane Sweep

 Euler’s Formula

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 2

2

Triangle AreaTriangle Area

2 1 3 1

2 1 3 1

2 () ()

sin

Area P P P P

P P P P 

    

   

P2(x2,y2)

P3(x3,y3)

P1(x1,y1)

2 1 2 1

3 1 3 1

1 1

2 2

3 3

1

1

1

x x y y

x x y y

x y

x y

x y

 


 





Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 3

 The determinant is twice the area of the triangle whose
vertices are the rows of the matrix.

Triangle OrientationTriangle Orientation

1

1
1

11 yx

A

(x1,y1)

 The sign of the result indicates the orientation of the
vertices.

1

1
2

33

22

yx

yxArea 

(x2,y2)
(x3,y3)

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 4

vertices.

 Positive triangle  counter-clockwise direction  left turn.

 Negative triangle  clockwise direction  right turn.

3

LineLine--Segment IntersectionSegment Intersection

 Theorem: Segments (p1,p2) and (p3,p4)
intersect in their interiors if and only if

d diff t id f th li

p4

p2

p1 and p2 are on different sides of the line p3p4;
and
p3 and p4 are on different sides of the line p1p2.

 This can be checked by computing the
orientations of four triangles. Which?

p3

p1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 5

 Special cases:

Computing the IntersectionComputing the Intersection

1 2 1() () 0 1p t p p p t t    
p

1 2 1() () 0 1q s q q q s s    
q1

p2

q2

p1

Question: What is the meaning of other
values of s and t?

Solve (2D) linear vector equation for t and s:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 6

() ()

[0,1] [0,1]

p t q s

t s


 check that and

4

Point in PolygonPoint in Polygon

 Given a polygon P with n sides, and
a point q, decide whether qP.

q

 Solution A: Count how many times a ray
from q to infinity intersects the polygon.

qP if and only if this number is odd.

P

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 7

 Time complexity: (n)

 Question: Are there any special cases?

Point in Polygon (cont.)Point in Polygon (cont.)

P

 Solution B: Sum up the angles
i=piqpi+1 for i=0,..,n-1 (n0 mod n)

P

q

 Sum = 2 iff qP (otherwise Sum = 0)

 Note: Some angles are negative.

1 1

1

_ (, ,)
sin

|| || || ||
i i

i
i i

signed area p q p

p q p q
  



 
     

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 8

 Time complexity: Θ(n)

 Question: Can the problem be solved in less
time if P is convex?

5

PlanePlane--Sweep ParadigmSweep Paradigm
 Problem: Given n line-segments in

the plane, compute all their
intersectionsintersections.

 Variant: Report # of intersections.
 Another variant: Is there any pair

of intersecting segments?
 Assumptions:

No line segment is vertical.
No two segments overlap in more than

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 9

g p
one point.
No three segments intersect at a
common point.

 Naive algorithm: Check each pair of segments for
intersection. Complexity: (n2) time, (n) space.

SegmentSegment--Intersection AlgorithmIntersection Algorithm
 An event is any endpoint or

intersection point.
 Sweep the plane from left to right Sweep the plane from left to right

using a vertical line.
Maintain two data structures:

Event priority queue: sorted by x
coordinate.
Sweep-line status: stores segments
currently intersected by the sweep line,
sorted by y coordinate

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 10

sorted by y coordinate.

6

Basic IdeaBasic Idea

We are able to identify all intersections by
looking only at adjacent segments in the
sweep line status during the sweep

Theorem: Just before an intersection
occurs (infinitesimally-close to it), the two
respective segments are adjacent to each
other in the sweep-line status.

sweep line status during the sweep.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 11

In practice: Look ahead: whenever two
line segments become adjacent along the
sweep line, check for their intersection to
the right of the sweep line.

Detailed AlgorithmDetailed Algorithm

 Initialization:
Put all segment endpoints in the event queue, sorted
according to x coordinates Time: O(n log n)according to x coordinates. Time: O(n log n).

Sweep line status is empty.

 The algorithm
proceeds by
inserting, deleting,
and handling

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 12

g
discrete events
from the queue
until it is empty.

7

Detailed Algorithm (cont.)Detailed Algorithm (cont.)

 Event of type A: Beginning of a
segment (left endpoint)segment (left endpoint)

Locate segment position in the status.

Insert segment into sweep line status.

Test for intersection to the right of the
sweep line with the segments
immediately above and below. Insert
intersection point(s) (if found) into the
event queue

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 13

event queue.

 Time complexity:

n events, O(log n) time for each
 O(n log n) in total.

Detailed Algorithm (cont.)Detailed Algorithm (cont.)

 Event of type B: End of a segment
(right endpoint)(right endpoint)

Locate segment position in the status.

Delete segment from sweep line status.

Test for intersection to the right of the
sweep line between the segments
immediately above and below. Insert
intersection point (if found, and if not
already in the queue) into the event

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 14

already in the queue) into the event
queue.

 Time complexity:

n events, O(log n) time for each
 O(n log n) in total.

8

Detailed Algorithm (cont.)Detailed Algorithm (cont.)
 Event of type C: Intersection point

Report/count the point.
Swap the two respective lineSwap the two respective line
segments in the sweep-line status.
For the new upper segment: Test it for
intersection against the segment above
it in the status (if exists). Insert
intersection point (if found, and if not
already in the queue) into the event
queue.
Do a similar action for the new lower

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 15

Do a similar action for the new lower
segment (check against the segment
below it, if any).

 Time complexity:
k such events, O(log n) each

 O(k log n) in total.

k is thek is the
output sizeoutput size

ExampleExample

s3

a3
b4

s4

s2

s1
s0

e1

1

b1

0

b0

a2

b2

a4 b3

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 16

s0,s1,s2,s3

a4, b1, b2, b0, b3, b4

Sweep Line
Status

Event
Queue

a1 a0

9

Example (cont.)Example (cont.)

s3

a3
b4

s4

s2

s1
s0

e1

1

b1

0

b0

a2

b2

a4 b3

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 17

Insert s4 to status

Test s4-s3 and s4-s2. Add e1 to event queue

s0,s1,s2, s4, s3

b1, e1, b2, b0, b3, b4

Action

Sweep Line
Status

Event
Queue

a1 a0

Example (cont.)Example (cont.)

s3

a3
b4

s4

s2

s1
s0

e2

1

b1

0

b0

a2

b2

a4 b3

e1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 18

Delete s1 from status

Test s0-s2. Add e2 to event queue

s0,s2,s4,s3

e1, e2, b2, b0, b3, b4

Action

Sweep Line
Status

Event Queue

a1 a0

10

Example (cont.)Example (cont.)

s3

a3
b4

s4

s2

s1

s0
1

b1

0

b0

a2

b2

a4 b3

e1

e2

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 19

Swap s3 and s4 .

Test s3-s2.

s0,s2,s3,s4

e2, b2, b0, b3, b4

Action

Sweep Line
Status

Event Queue

a1 a0

Complexity AnalysisComplexity Analysis
 Basic data structures:

Event queue: heap
Sweep line status: balanced binary treep y

 Each heap/tree operation requires O(log n) time.
(Why is O(log k) = O(log n) ?)

 Total time complexity: O((n+k) log n).
If kn2 this is slightly worse than the naive algorithm!
But if k=o(n2/log n) then the sweep algorithm is faster.
Note: There exists a better algorithm whose running

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 20

time is (n log n + k).
 Total space complexity: O(n+k).

Question: How can this be improved to O(n)?
(Hint: Which events are [temporarily] redundant
in the queue?)

11

Graph DefinitionsGraph Definitions

G = <V,E>
V = vertices =
{A,B,C,D,E,F,G,H,I,J,K,L}
E = edges =E = edges =
{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),
(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),
(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),
(J,L),(J,K),(K,L),(L,I)}

Vertex degree (valence) = number of edges incident on vertex.
deg(J) = 4, deg(H) = 2

k l h h h ti ll h d k

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 21

k-regular graph = graph whose vertices all have degree k

A face of a planar graph is an empty cycle of vertices/edges.
F = faces =
{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I),
(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G),(A,B,C,D,E,F,G,H)}

ConnectivityConnectivity

A graph is connected if there is a path of edges
connecting every two vertices.

A graph is k-connected if between every two
vertices there are k edge-disjoint paths.

A graph G’=<V’,E’> is a subgraph of a graph
G=<V,E> if V’ is a subset of V and E’ is the subset
of E incident on V’.

A connected component of a graph is a maximal
connected subgraph.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 22

A subset V’ of V is an independent set in
G if the subgraph it induces does not contain
any edges of E.

12

Graph EmbeddingGraph Embedding

A graph is embedded in Rd if each vertex is
assigned a position in Rd.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 23

Embedding in R2 Embedding in R3

Planar GraphsPlanar Graphs

B

Planar Graph Plane Graph

A

B

C

D

A

B

C

D

B

Straight-Line Plane Graph

A planar graph is a graph
whose vertices and edges can
be embedded in R2 such that
its edges do not intersect.

Theorem: Every planar graph
can be drawn as a straight-line
plane graph.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 24

A

B

C

D

p g p

13

TriangulationTriangulation

A triangulation of a point set is a straight-line
plane graph whose (finite) faces are allp g p ()
triangles. (Triangulation of the CH of the set.)

The Delaunay triangulation of a set of
points is the unique set of triangles such
that the circumcircle of any triangle does
not contain any other point.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 25

The Delaunay triangulation avoids long
and skinny triangles.

MeshesMeshes
A

B C

D

I

LJ M

Boundary edge: adjacent to exactly one face.
Regular edge: adjacent to exactly two faces

A mesh is a straight-line graph embedded in R3.

E

F

K
H

G

Regular edge: adjacent to exactly two faces.
Singular edge: adjacent to more than two faces.

Closed mesh: mesh with no boundary edges.
Manifold mesh: mesh with no singular edges. Corners  V x F

Half-edges  E x F

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 26

Closed ManifoldManifold with BoundaryNon-Manifold

14

Planar Graphs and MeshesPlanar Graphs and Meshes

Every manifold mesh is planar !!

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 27

Flatten !!Head

TopologyTopology
A

B C

D

E

I

L

K

J

H

v =12
f = 14
e = 25
c = 1

The genus of a graph is half of
the maximal number of closed paths

that do not disconnect the graph
(the number of “holes”).

Euler-Poincaré Formula

For a planar graph:

f 2()

E

F

H

G

c 1
g = 0
b = 1

(the number of holes).

Genus(sphere) = 0
Genus(torus) = 1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 28

v+f-e = 2(c-g)-b

v = # vertices c = # conn. comp.
f = # faces g = genus
e = # edges b = # boundaries

15

ExamplesExamples

Genus 0 Genus 1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 29
Genus 2

ExercisesExercises

Theorem: In a closed manifold
triangle mesh, the average vertex
degree is ~6.

Proof: In such a mesh, f = 2e/3.
By Euler’s formula: v+2e/3-e = 2-2g
hence e = 3(v-2+2g) and f = 2(v-2+2g).

So Average(deg) = 2e/v = 6(v-2+2g)/v
~ 6 for large v.

Corollary: Only a toroidal (g=1)
closed manifold triangle mesh can be

Does Euler’s theorem imply that any
planar graph has an independent set

of size at least ¼ n ?

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 30

g
regular (all vertex degrees are 6).

Proof: In a regular mesh the average

degree is exactly 6. This can happen

only if g=1.

16

Euler’s FormulaEuler’s Formula

 For a connected planar
graph with E edges, V
ertices and F faces the

V = 9
E 9vertices, and F faces, the

following relation holds:

V-E+F = 2

E = 9
F = 2

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 31

The Linearity RelationThe Linearity Relation
 Theorem: In a planar graph, E = O(V) and F = O(V).

 Proof:
We may assume that the graph is maximally triangulated (this may only
increase E and F).

Every face is bounded by 3 half-edges  3F = 2E  E=3F/2

By Euler’s formula: V-E+F = 2  V-3F/2+F = 2  F = 2(V-2) = O(V)

Similarly, F = 2E/3  V-E+2E/3=2  E = 3(V-2) = O(V)

V 10

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 32

V=10
E=24
F=16

