|
| |
Computational Geometry

Chapter 3

Polygons and Triangulation

A
{ -
Center for Graphics and Geometric Computing, Technion L”k"‘ -
I ;|
On the Agenda
U The Art Gallery Problem
U Polygon Triangulation
A
{ -
Center for Graphics and Geometric Computing, Technion L”k"‘ -

"
Art Gallery Problem

U Given a simple polygon P, say
that two points q and r can see
each other if the open segment qr
lies entirely within P.

U A point p guards a region R c P
if p sees all points qeR.

U4 Given a polygon P, what is the
minimum number of guards
required to guard P, and what are
their locations?

&N

Center for Graphics and Geometric Computing, Technion

€N

|
1N .
Observations
U The entire interior of a convex

polygon is visible from any
interior point. (Why?)

convex
kernel

non-star-shaped

U A star-shaped polygon requires
only one guard located in its

kernel.
star-shaped

: N
Oy

-

Center for Graphics and Geometric Computing, Technion

I m
k.rt Gallery Problem: Easy Upper Bound

U Theorem (to be proven later):
Every simple planar polygon
with n vertices has a
triangulation into n-2 triangles. NC_—

U n-2 guards suffice for an n-gon:

Subdivide the polygon into n-2
triangles (triangulation).
Place one guard in each triangle.

Y,
)

=,

Center for Graphics and Geometric Computing, Technion 4

€N

a
Diagonals in Polygons

O A diagonal of a polygon P is a line segment
connecting two vertices, which lies entirely within P.
U Theorem: Every polygon with n>3 vertices
has a diagonal.

U Proof: Find the leftmost vertex v. Connect its
two neighbors u and w. If this is not a diagonal

u
there must be other vertices inside the triangle
uvw. Connect v with the vertex v’ farthest from
the segment uw. This must be a diagonal. v
U Questions:

1. Why is v'v a diagonal? w
2. Why not connect v with the leftmost vertex inside uvw? (‘f
v
)
b

e

-

Center for Graphics and Geometric Computing, Technion 6

= Diagonals in Polygons

O A diagonal of a polygon P is a line segment
connecting two vertices, which lies entirely within P.

U Theorem: Every polygon with n>3 vertices
has a diagonal.

O Proof: Find the leftmost vertex v. Connect its

two neighbors u and w. If this is not a diagonal u

there must be other vertices inside the triangle
uvw. Connect v with the vertex v’ farthest from
the segment uw. This must be a diagonal. v

U Questions:
1. Why is v'v a diagonal?
2. Why not connect v with the leftmost vertex inside uvw?

Center for Graphics and Geometric Computing, Technion

Complexity of Triangulations

U Theorem: Any triangulation of a
simple polygon with n vertices consists
of n-3 diagonals and n-2 triangles.

U Proof: By induction on n:

Basis: A triangle (n=3) has a triangulation
(itself) with no diagonals and one triangle.
Inductive step:

1. For an n-vertex polygon, construct a
diagonal dividing the polygon into two
polygons with n; and n, vertices such
that n+n,-2=n. (Why “-2"7?)

2. Triangulate the two parts of the polygon.

3. Diagonals: (n4-3)+(n,-3)+1=(n,+n,-2)-3=n-3;
Triangles: (n4-2)+(n,-2)=(n,+n,-2)-2=n-2.

Center for Graphics and Geometric Computing, Technion

Y

N
(.

s RIS
-

= ®(n?)-Time Polygon Triangulation

Q Algorithm:
1. Input: A simple n-gon.
2. Find a diagonal.
3. Call the algorithm recursively for the two subpolygons.

O Analysis: T(n)=0(n)+ max (T(n,)+T(n,))

N +n,=n+2
diagonal recursion

Q Solution: T (n) :@(nz)

U Space: O(n)

Center for Graphics and Geometric Computing, Technion

= Art Gallery Problem: Upper Bound

4 Color the vertices of the (triangulated) polygon
with three colors such that there is no edge
between two vertices with the same color.

U Question: Why is this possible?
(Hint: The dual of any triangulation is a tree
with vertex degree at most 3. Full proof later.)
U Corollary: All triangles are 3-colored.

Q Pick the color that is the least used. This color is
used in at most | n/3] vertices.

U Place a guard on each vertex with this color.
Due to the corollary all the triangles are guarded!

Q = New upper bound: |n/3]

Center for Graphics and Geometric Computing, Technion

I |
3-Coloring
O Theorem: Every triangulated polygon can be 3-colored.
O Proof: Consider the dual graph.

Since every diagonal disconnects the
polygon, the dual graph is a tree.

Since every node in the graph is the
dual of a triangle, its degree is < 3.

Since any tree has a leaf, any
triangulation has an ear (a triangle
containing two polygon edges).

Finally, by induction on n:
Basis: Trivial if n=3.
Induction: Cut off an ear. 3-color the remaining (n-1)-gon.
Color the nth vertex with the third color different from the

two on its supporting edge.
(.fﬁ
y)
Center for Graphics and Geometric Computing, Technion 1 L?k“‘

3-Coloring

U Theorem: Every triangulated polygon can be 3-colored.
U Proof: Consider the dual graph.

Since every

In the graph is the
dintotiaet '

s9Retiess vhile

Finally, by induction on n:
Basis: Trivial if n=3.

Induction: Cut off an ear. 3-color the remaining (n-1)-gon.
Color the nth vertex with the third color different from the

two on its supporting edge.
(.fﬁ
y)
Center for Graphics and Geometric Computing, Technion 12 L?k“‘

' in
A Matching Lower Bound

U Fact: There exists a
polygon with n vertices,
for which n/3 guards are
necessary.

Q Therefore, | n/3] guards
are needed in the worst
case.

14,3

~

13

Center for Graphics and Geometric Computing, Technion

L
' O(n log n)-Time Polygon Triangulation

O A simple polygon is called monotone with
respect to a direction v if for any line {
perpendicular to v, the intersection of the
polygon with { is connected.

O A polygon is called monotone if there exists
any such direction v.

O A polygon that is monotone with respect to
the x- (or y-) axis is called x- (or y-)
monotone.

Question 1: How can we check in O(n)
time whether a polygon is y-monotone? v

Question 2: What is a polygon that is y-monotone but not
monotone with respect to all directions? x-monotone polygon

i

Center for Graphics and Geometric Computing, Technion 14 4

€N

Triangulation Algorithm — cont.

1) Partition the polygon into
y-monotone pieces

(“nioim ni>nn’).

2) Triangulate each
y-monotone piece
separately.

Center for Graphics and Geometric Computing, Technion

a
y-Monotone Polygons

Q Classifying polygon vertices:

A start (resp., end) vertex is a
vertex whose interior angle is less
than = and its two neighboring
vertices both lie below (resp.,
above) it.

A split (resp., merge) vertex is

a vertex whose interior angle

is greater than & and its two
neighboring vertices both lie
below (resp., above) it.

All other vertices are regular.

Center for Graphics and Geometric Computing, Technion

y-Monotone Polygons (cont.)

(start

U Theorem: A polygon without split
and merge vertices is y-monotone.

U Proof: Since there are only
start/end/regular vertices, the
polygon must consist of two
y-monotone chains.

regular
@)

end

U To partition a polygon to monotone pieces, eliminate
split (merge) vertices by adding diagonals upward
(downward) from the vertex.

Naturally, the diagonals must not intersect!

Center for Graphics and Geometric Computing, Technion L oa

| m
. Monotone Partitioning
Q Classify all vertices.
O Sweep the polygon from top to bottom.

QO Maintain the edges intersected by
the sweep line in a sweep line status
(SLS sorted by x coordinates).

U Maintain vertex events in an event
queue (EQ sorted by y coordinates). e
All events are known in advance! o helper(e,)

Q Eliminate split/merge vertices by
connecting them to other vertices
(to be explained later).

Q:: For each edge e, define helper(e) as
the lowest vertex (seen so far) above the
sweep line visible to the right of the edge. o

Q helper(e) is initialized by the upper endpoint of e. . (‘)

Center for Graphics and Geometric Computing, Technion L oa

-

10

L
1 e
Monotone Partitioning (cont.)

U A split vertex may be connected

to the helper vertex of the edge
immediately to its left.

U However, a merge vertex should
be connected to a vertex which
has not been processed yet!

U Clever idea: Every merge vertex

v is the helper of some edge e, g
so that v will be resolved either Vies
when e disappears; or
when v ceases to be the helper of e.

It will be the last time v can be
resolved!

Center for Graphics and Geometric Computing, Technion

Monotone Partitioning Algorithm

U Input: A polygon P, given as a list of vertices
ordered counterclockwise. The edge e; immediately
follows the vertex v;.

U4 Construct EQ containing the vertices of P sorted by
their y-coordinates. (In case two or more vertices
have the same y-coordinate, the vertex with the
smaller x-coordinate has a higher priority.)

U Initialize SLS to be empty.

U While EQ is not empty:
Pop vertex v;
Handle v.

(No new events are generated during execution.)

- 1 i 7
O Idea: No split/merge vertex remains unhandled! . (‘)

Center for Graphics and Geometric Computing, Technion

11

Monotone Partitioning

U Handling a start vertex (v,):
Add e to SLS
helper(g;) == v

U Implementation detail:
Only “left” edges (for which
the polygon is on the right)
need a helper and are thus
kept in the status.

Center for Graphics and Geometric Computing, Technion

a
Monotone Partitioning

U Handling an end vertex (v,):

If helper(e, ;) is a merge
vertex, then connect v; to
helper(e.;) (Why?!)
Remove g, from SLS

Center for Graphics and Geometric Computing, Technion

12

-
18 TOR
Monotone Partitioning
U Handling a split vertex (v;):
Find in SLS the edge ¢,
directly to the left of v,
Connect v, to helper(e))

helper(e) := v;
Insert g, into SLS
helper(g;) == v

Center for Graphics and Geometric Computing, Technion

. Monotone Partitioning

U Handling a merge vertex (v;):
If helper(e, ;) is a merge vertex,
then connect v, to helper(e, ;)
Remove e, from SLS
Find in SLS the edge e, directly vy &
to the left of v,

If helper(e)) is a merge vertex,
then connect v, to helper(e;)

helper(e) := v,

Center for Graphics and Geometric Computing, Technion

13

' in
Monotone Partitioning

U Handling a regular vertex (v;):
If the polygon’s interior lies to
the left of v; then:

E Find in SLS the edge e, directly
to the left of v ,\

E If helper(e)) is a merge vertex,
then connect v; to helper(e))

E helper(e) := v,
Else:
& If helper(e;,) is a merge vertex,
then connect v, to helper(e,)
& Remove ¢, from SLS
F Insert g, into SLS
E helper(g) := v,

Center for Graphics and Geometric Computing, Technion Y

-
Ein e v
Proof of Correctness: Split Vertices
U Assume that the split vertex v; was connected to v,
U Assume that s=vsV, intersects another original edge e.
V4

U Draw horizontal lines through v; and v,.

U Where can the endpoint of e, that
is to the left of s, be?

Below {,: Impossible. (Why?) e, y .

Between {, and {,: Ditto. (Why?) s v 2

Above &,: Ditto. (Why?) / \ ’ /

U Now assume that s intersects V4

another diagonal. Why can’t that be? ¢©

4 Conclusion: Ve
Split events are resolved correctly. A
=
{ -
Center for Graphics and Geometric Computing, Technion 26 g“‘ 2

14

Proof of Correctness (cont.)

U Merge vertices: Exercise.

U Complete the details of the proof as an exercise.

~

Center for Graphics and Geometric Computing, Technion 2 L’,k

14,3

e
- Triangulating a y-monotone Polygon

In Theory

U Sweep the polygon from top to bottom.

U Greedily triangulate anything possible
above the sweep line, and then forget
about this region.

When we process a vertex v, the unhandled
region above it always has a simple structure:
Two y-monotone (left and right) chains, each
containing at least one edge. If a chain consists
of two or more edges, it is reflex, and the other
chain consists of a single edge whose bottom
endpoint has not been handled yet.

Each diagonal is added in O(1) time.

~

Center for Graphics and Geometric Computing, Technion 28 L’,k

14,3

15

L
" Triangulating a Y-monotone Polygon

In Practice

QO Continue sweeping while one /
chain contains only one edge,
while the other edge is concave.

O When a “convex edge” appears
in the concave chain, triangulate
as much as possible by connecting
the new vertices to all visible
vertices of the concave chain.

U When the edge in the other chain terminates, connect it
to all the vertices of the concave chain using a “fan”.

U Time complexity: O(k), where k is the complexity of the

polygon.
Question: Why?! (f]
Center for Graphics and Geometric Computing, Technion 29 L’,'f"‘ 2
I |
] | . . :
Total Time-Complexity Analysis
U Partitioning the polygon into monotone pieces:
O(n log n)
(every vertex event is handled in O(log n) time)
Q Triangulating all the monotone pieces: ©(n)
(every vertex event is handled in ®(1) time)
Total: O(n log n)
Center for Graphics and Geometric Computing, Technion L’,k"‘

16

-

Historical Perspective

Q O(n?):
O O(n log n):

Optimal??

U O(n log log n):

Diagonal insertion
Lee and Preparata
(Monotone decomposition, 1977)
Avis and Toussaint (1981)
Chazelle (1982)

Tarjan and Van Wyk (1988)

O O(n log* n): Randomized:
Clarkson, Tarjan, and Van Wyk (1989)
Seidel (Trapezoidal decomposition, 1991)
Devillers (1992)
U e(n): Optimal (yet deterministic): A
Chazelle (1991) N
Center for Graphics and Geometric Computing, Technion L’,»‘

