
1

Computational GeometryComputational Geometry

Chapter Chapter 33

Polygons and TriangulationPolygons and Triangulation

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 1

On the AgendaOn the Agenda

 The Art Gallery Problem

 Polygon Triangulation

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 2

2

Art Gallery ProblemArt Gallery Problem

R

 Given a simple polygon P, say
that two points q and r can see

 Given a polygon P, what is the r

qp

R
p q

each other if the open segment qr
lies entirely within P.

 A point p guards a region R  P
if p sees all points qR.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 3

p yg ,
minimum number of guards
required to guard P, and what are
their locations?

ObservationsObservations

 The entire interior of a convex
polygon is visible from any
interior point. (Why?)

 A t h d l i

convex

non-star-shaped

kernelkernel

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 4

 A star-shaped polygon requires
only one guard located in its
kernel.

star-shaped

3

Art Gallery Problem: Easy Upper BoundArt Gallery Problem: Easy Upper Bound

 Theorem (to be proven later): Theorem (to be proven later):
Every simple planar polygon
with n vertices has a
triangulation into n-2 triangles.

 n-2 guards suffice for an n-gon:
Subdivide the polygon into n-2
triangles (triangulation)

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 5

triangles (triangulation).

Place one guard in each triangle.

Diagonals in PolygonsDiagonals in Polygons

 A diagonal of a polygon P is a line segment
connecting two vertices, which lies entirely within P.

 Theorem: Every polygon with n>3 vertices
has a diagonal.

 Proof: Find the leftmost vertex v. Connect its
two neighbors u and w. If this is not a diagonal
there must be other vertices inside the triangle
uvw. Connect v with the vertex v’ farthest from

u

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 6

 Questions:

1. Why is v’v a diagonal?

2. Why not connect v with the leftmost vertex inside uvw?

uvw. Connect v with the vertex v farthest from
the segment uw. This must be a diagonal. v

w

v’

4

Diagonals in PolygonsDiagonals in Polygons

 A diagonal of a polygon P is a line segment
connecting two vertices, which lies entirely within P.

 Theorem: Every polygon with n>3 vertices
has a diagonal.

 Proof: Find the leftmost vertex v. Connect its
two neighbors u and w. If this is not a diagonal
there must be other vertices inside the triangle
uvw. Connect v with the vertex v’ farthest from

u

v’

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 7

 Questions:

1. Why is v’v a diagonal?

2. Why not connect v with the leftmost vertex inside uvw?

uvw. Connect v with the vertex v farthest from
the segment uw. This must be a diagonal. v

w

Complexity of TriangulationsComplexity of Triangulations

 Theorem: Any triangulation of a
simple polygon with n vertices consists
of n 3 diagonals and n 2 trianglesof n-3 diagonals and n-2 triangles.

 Proof: By induction on n:
Basis: A triangle (n=3) has a triangulation
(itself) with no diagonals and one triangle.

Inductive step:

1. For an n-vertex polygon, construct a

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 8

yg
diagonal dividing the polygon into two
polygons with n1 and n2 vertices such
that n1+n2-2=n. (Why “-2”?)

2. Triangulate the two parts of the polygon.

3. Diagonals: (n1-3)+(n2-3)+1=(n1+n2-2)-3=n-3;
Triangles: (n1-2)+(n2-2)=(n1+n2-2)-2=n-2.

5

((nn22))--Time Polygon TriangulationTime Polygon Triangulation

 Algorithm:
1. Input: A simple n-gon.

2 Fi d di l2. Find a diagonal.

3. Call the algorithm recursively for the two subpolygons.

 Analysis:

diagonal recursion

 S l i

))()((max)()(21
221

nTnTnOnT
nnn




2

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 9

 Solution:

 Space: (n)

)()(2nnT 

 Color the vertices of the (triangulated) polygon
with three colors such that there is no edge

Art Gallery Problem: Upper BoundArt Gallery Problem: Upper Bound

 Pick the color that is the least used. This color is
 

g
between two vertices with the same color.

 Question: Why is this possible?

(Hint: The dual of any triangulation is a tree
with vertex degree at most 3. Full proof later.)

 Corollary: All triangles are 3-colored.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 10

used in at most n/3 vertices.

 Place a guard on each vertex with this color.
Due to the corollary all the triangles are guarded!

  New upper bound: n/3

6

33--ColoringColoring
 Theorem: Every triangulated polygon can be 3-colored.

 Proof: Consider the dual graph.

Since every diagonal disconnects theSince every diagonal disconnects the
polygon, the dual graph is a tree.

Since every node in the graph is the
dual of a triangle, its degree is ≤ 3.

Since any tree has a leaf, any
triangulation has an ear (a triangle
containing two polygon edges).

Fi ll b i d ti

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 11

Finally, by induction on n:

Basis: Trivial if n=3.

Induction: Cut off an ear. 3-color the remaining (n-1)-gon.
Color the nth vertex with the third color different from the
two on its supporting edge.

33--ColoringColoring
 Theorem: Every triangulated polygon can be 3-colored.

 Proof: Consider the dual graph.

Since every diagonal disconnects theSince every diagonal disconnects the
polygon, the dual graph is a tree.

Since every node in the graph is the
dual of a triangle, its degree is ≤ 3.

Since any tree has a leaf, any
triangulation has an ear (a triangle
containing two polygon edges).

Fi ll b i d ti

Since the polygon has n vertices while
any triangulation of it has n-2 triangles,
any triangulation has an ear (a triangle
containing two polygon edges).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 12

Finally, by induction on n:

Basis: Trivial if n=3.

Induction: Cut off an ear. 3-color the remaining (n-1)-gon.
Color the nth vertex with the third color different from the
two on its supporting edge.

7

A Matching Lower BoundA Matching Lower Bound

 Fact: There exists a
polygon with n verticespolygon with n vertices,
for which n/3 guards are
necessary.

 Therefore, n/3 guards

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 13

are needed in the worst
case.

O(O(nn log log nn))--Time Polygon TriangulationTime Polygon Triangulation

 A simple polygon is called monotone with
respect to a direction v if for any line ℓ p y
perpendicular to v, the intersection of the
polygon with ℓ is connected.

 A polygon is called monotone if there exists
any such direction v.

 A polygon that is monotone with respect to
the x- (or y-) axis is called x- (or y-)
monotone.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 14

y-monotone but not
x-monotone polygon

Question 1: How can we check in O(n)
time whether a polygon is y-monotone? vv

Question 2: What is a polygon that is
monotone with respect to all directions?

8

Triangulation Algorithm Triangulation Algorithm –– cont.cont.

1) Partition the polygon into
t iy-monotone pieces

.(”חתיכות מונוטוניות“)

2) Triangulate each
y-monotone piece
separately.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 15

 Classifying polygon vertices:
start

yy--Monotone PolygonsMonotone Polygons

A start (resp., end) vertex is a
vertex whose interior angle is less
than  and its two neighboring
vertices both lie below (resp.,
above) it.

A split (resp., merge) vertex is
a vertex whose interior angle
is greater than  and its two

regular

start

merge

split

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 16

is greater than  and its two
neighboring vertices both lie
below (resp., above) it.

All other vertices are regular. end

split

9

yy--Monotone Polygons (cont.)Monotone Polygons (cont.)

 Theorem: A polygon without split
and merge vertices is y-monotone.

start

 Proof: Since there are only
start/end/regular vertices, the
polygon must consist of two
y-monotone chains.

regular

end

merge

split

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 17

 To partition a polygon to monotone pieces, eliminate
split (merge) vertices by adding diagonals upward
(downward) from the vertex.
Naturally, the diagonals must not intersect!

 Classify all vertices.
 Sweep the polygon from top to bottom.
Maintain the edges intersected by

Monotone PartitioningMonotone Partitioning

the sweep line in a sweep line status
(SLS sorted by x coordinates).

Maintain vertex events in an event
queue (EQ sorted by y coordinates).
All events are known in advance!

 Eliminate split/merge vertices by
connecting them to other vertices

ej
helper(ej)

ek

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 18

connecting them to other vertices
(to be explained later).

 ▒ For each edge e, define helper(e) as
the lowest vertex (seen so far) above the
sweep line visible to the right of the edge.

 helper(e) is initialized by the upper endpoint of e.

10

Monotone Partitioning (cont.)Monotone Partitioning (cont.)
 A split vertex may be connected

to the helper vertex of the edge
immediately to its left.

ej

helper(ej)
ek

immediately to its left.

 However, a merge vertex should
be connected to a vertex which
has not been processed yet!

 Clever idea: Every merge vertex

ei

vi

vi

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 19

y g
v is the helper of some edge e,
so that v will be resolved either

when e disappears; or
when v ceases to be the helper of e.

It will be the last time v can be
resolved!

ej
helper(ej) ek

Vj+1

Monotone Partitioning AlgorithmMonotone Partitioning Algorithm
 Input: A polygon P, given as a list of vertices

ordered counterclockwise. The edge ei immediately
follows the vertex vfollows the vertex vi.

 Construct EQ containing the vertices of P sorted by
their y-coordinates. (In case two or more vertices
have the same y-coordinate, the vertex with the
smaller x-coordinate has a higher priority.)

 Initialize SLS to be empty.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 20

While EQ is not empty:
Pop vertex v;

Handle v.

(No new events are generated during execution.)

 Idea: No split/merge vertex remains unhandled!

11

 Handling a start vertex (vi):

Monotone PartitioningMonotone Partitioning

v Handling a start vertex (vi):
Add ei to SLS

helper(ei) := vi

 Implementation detail:
Only “left” edges (for which
the polygon is on the right)

e1

e2

e3

e7
e8

e9

v2

v3

v5

v7

v8

v9

v1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 21

the polygon is on the right)
need a helper and are thus
kept in the status.

e4

e5
e6

v4
5

v6

 Handling an end vertex (vi):
If helper(ei-1) is a merge
vertex then connect v to v8

Monotone PartitioningMonotone Partitioning

v1

vertex, then connect vi to
helper(ei-1) (Why?!)

Remove ei-1 from SLS

e1

e2
e3

e4

e5
e6

e7
e8

e9

v2

v3

v4
v5

v6

v7

8

v9

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 22

6

12

 Handling a split vertex (vi):
Find in SLS the edge ej

directly to the left of v

Monotone PartitioningMonotone Partitioning

v1directly to the left of vi

Connect vi to helper(ej)

helper(ej) := vi

Insert ei into SLS

helper(ei) := vi

e1

e2

e3

e7
e8

e9

v2

v3

v5 v

v8

v9

1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 23

e4

e5 e6

v4
5

v6

v7

Monotone PartitioningMonotone Partitioning

 Handling a merge vertex (vi):
If helper(ei-1) is a merge vertex,
then connect v to helper(e)

v1

e1

e2

e3

e7e9

e10

v2

v3

v5

v7

v9

v10

then connect vi to helper(ei-1)

Remove ei-1 from SLS

Find in SLS the edge ej directly
to the left of vi

If helper(ej) is a merge vertex,
then connect vi to helper(ej)

helper(ej) := vi

v8

e8

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 24

e4

e5

e6v4
5

v6

13

Monotone PartitioningMonotone Partitioning

 Handling a regular vertex (vi):
If the polygon’s interior lies to
the left of v then:

v2

v7

the left of vi then:
Find in SLS the edge ej directly
to the left of vi

If helper(ej) is a merge vertex,
then connect vi to helper(ej)

helper(ej) := vi

Else:
If helper(e) is a merge vertex

e7

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 25

If helper(ei-1) is a merge vertex,
then connect vi to helper(ei-1)

Remove ei-1 from SLS

Insert ei into SLS

helper(ei) := vi

e6

Proof of Correctness: Split VerticesProof of Correctness: Split Vertices

 Assume that the split vertex v5 was connected to v2.

 Assume that s=v5v2 intersects another original edge e.
v

 Draw horizontal lines through v5 and v2.

Where can the endpoint of e, that
is to the left of s, be?

Below ℓ1: Impossible. (Why?)

Between ℓ1 and ℓ2: Ditto. (Why?)

Above ℓ2: Ditto. (Why?)

e1

e2e3

e7e8

e9

v2

v3 v7

v8

v9

v1

ℓ2

ℓ1

ss

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 26

 Now assume that s intersects
another diagonal. Why can’t that be?

 Conclusion:
Split events are resolved correctly.

e4

e5

e6v4
v5

v6

14

Proof of Correctness (cont.)Proof of Correctness (cont.)

Merge vertices: Exercise.

 Complete the details of the proof as an exercise.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 27

Triangulating a Triangulating a yy--monotone Polygonmonotone Polygon

 Sweep the polygon from top to bottom

In Theory

 Sweep the polygon from top to bottom.

 Greedily triangulate anything possible
above the sweep line, and then forget
about this region.

When we process a vertex v, the unhandled
region above it always has a simple structure:
Two y-monotone (left and right) chains, each

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 28

containing at least one edge. If a chain consists
of two or more edges, it is reflex, and the other
chain consists of a single edge whose bottom
endpoint has not been handled yet.

Each diagonal is added in O(1) time.

15

Triangulating a YTriangulating a Y--monotone Polygonmonotone Polygon

 Continue sweeping while one
chain contains only one edge

In Practice

chain contains only one edge,
while the other edge is concave.

When a “convex edge” appears
in the concave chain, triangulate
as much as possible by connecting
the new vertices to all visible
vertices of the concave chain.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 29

When the edge in the other chain terminates, connect it
to all the vertices of the concave chain using a “fan”.

 Time complexity: O(k), where k is the complexity of the
polygon.
Question: Why?!

Total TimeTotal Time--Complexity AnalysisComplexity Analysis

 Partitioning the polygon into monotone pieces:

O(n log n)O(n log n)

(every vertex event is handled in O(log n) time)

 Triangulating all the monotone pieces: (n)

(every vertex event is handled in (1) time)

Total: O(n log n)

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 30

16

Historical PerspectiveHistorical Perspective
 O(n2): Diagonal insertion
 O(n log n): Lee and Preparata

(Monotone decomposition, 1977)(Monotone decomposition, 1977)
Avis and Toussaint (1981)
Chazelle (1982)

Optimal??

 O(n log log n): Tarjan and Van Wyk (1988)
 O(n log* n): Randomized:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 31

Clarkson, Tarjan, and Van Wyk (1989)
Seidel (Trapezoidal decomposition, 1991)
Devillers (1992)

 (n): Optimal (yet deterministic):
Chazelle (1991)

