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Chapter Chapter 33

Polygons and TriangulationPolygons and Triangulation
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On the AgendaOn the Agenda

 The Art Gallery Problem

 Polygon Triangulation
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Art Gallery ProblemArt Gallery Problem

R

 Given a simple polygon P, say 
that two points q and r can see

 Given a polygon P, what is the r

qp

R
p q

each other if the open segment qr
lies entirely within P.

 A point p guards a region R  P
if p sees all points qR.
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p yg ,
minimum number of guards 
required to guard P, and what are 
their locations?

ObservationsObservations

 The entire interior of a convex 
polygon is visible from any
interior point.  (Why?)

 A t h d l i

convex

non-star-shaped

kernelkernel
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 A star-shaped polygon requires 
only one guard located in its 
kernel.

star-shaped
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Art Gallery Problem:  Easy Upper BoundArt Gallery Problem:  Easy Upper Bound

 Theorem (to be proven later): Theorem (to be proven later):  
Every simple planar polygon 
with n vertices has a 
triangulation into n-2 triangles.

 n-2 guards suffice for an n-gon:
Subdivide the polygon into n-2 
triangles (triangulation)
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triangles (triangulation).

Place one guard in each triangle.

Diagonals in PolygonsDiagonals in Polygons

 A diagonal of a polygon P is a line segment 
connecting two vertices, which lies entirely within P.

 Theorem: Every polygon with n>3 vertices  
has a diagonal.

 Proof: Find the leftmost vertex v.  Connect its 
two neighbors u and w.  If this is not a diagonal 
there must be other vertices inside the triangle 
uvw. Connect v with the vertex v’ farthest from

u
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 Questions:

1.  Why is v’v a diagonal?

2.  Why not connect v with the leftmost vertex inside uvw?

uvw.  Connect v with the vertex v  farthest from 
the segment uw.  This must be a diagonal. v

w

v’
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Diagonals in PolygonsDiagonals in Polygons

 A diagonal of a polygon P is a line segment 
connecting two vertices, which lies entirely within P.

 Theorem: Every polygon with n>3 vertices  
has a diagonal.

 Proof: Find the leftmost vertex v.  Connect its 
two neighbors u and w.  If this is not a diagonal 
there must be other vertices inside the triangle 
uvw. Connect v with the vertex v’ farthest from

u

v’
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 Questions:

1.  Why is v’v a diagonal?

2.  Why not connect v with the leftmost vertex inside uvw?

uvw.  Connect v with the vertex v  farthest from 
the segment uw.  This must be a diagonal. v

w

Complexity of TriangulationsComplexity of Triangulations

 Theorem: Any triangulation of a 
simple polygon with n vertices consists 
of n 3 diagonals and n 2 trianglesof n-3 diagonals and n-2 triangles.

 Proof: By induction on n:
Basis: A triangle (n=3) has a triangulation 
(itself) with no diagonals and one triangle.

Inductive step:

1. For an n-vertex polygon, construct a 

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 8

yg
diagonal dividing the polygon into two
polygons with n1 and n2 vertices such
that n1+n2-2=n.  (Why “-2”?)

2. Triangulate the two parts of the polygon.

3. Diagonals: (n1-3)+(n2-3)+1=(n1+n2-2)-3=n-3;
Triangles:  (n1-2)+(n2-2)=(n1+n2-2)-2=n-2. 
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((nn22))--Time Polygon TriangulationTime Polygon Triangulation

 Algorithm:
1. Input:  A simple n-gon.

2 Fi d di l2. Find a diagonal.

3. Call the algorithm recursively for the two subpolygons.

 Analysis:

diagonal           recursion

 S l i

))()((max)()( 21
221

nTnTnOnT
nnn




2
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 Solution:

 Space:  (n)

)()( 2nnT 

 Color the vertices of the (triangulated) polygon 
with three colors such that there is no edge 

Art Gallery Problem:  Upper BoundArt Gallery Problem:  Upper Bound

 Pick the color that is the least used.  This color is 
 

g
between two vertices with the same color.

 Question:  Why is this possible?

(Hint:  The dual of any triangulation is a tree 
with vertex degree at most 3.  Full proof later.)

 Corollary:  All triangles are 3-colored.
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used in at most n/3 vertices.

 Place a guard on each vertex with this color.
Due to the corollary all the triangles are guarded!

  New upper bound:  n/3
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33--ColoringColoring
 Theorem: Every triangulated polygon can be 3-colored.

 Proof: Consider the dual graph.

Since every diagonal disconnects theSince every diagonal disconnects the
polygon, the dual graph is a tree.

Since every node in the graph is the
dual of a triangle, its degree is ≤ 3.

Since any tree has a leaf, any
triangulation has an ear (a triangle
containing two polygon edges).

Fi ll b i d ti
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Finally, by induction on n:

Basis: Trivial if n=3.

Induction:  Cut off an ear.  3-color the remaining (n-1)-gon. 
Color the nth vertex with the third color different from the 
two on its supporting edge.

33--ColoringColoring
 Theorem: Every triangulated polygon can be 3-colored.

 Proof: Consider the dual graph.

Since every diagonal disconnects theSince every diagonal disconnects the
polygon, the dual graph is a tree.

Since every node in the graph is the
dual of a triangle, its degree is ≤ 3.

Since any tree has a leaf, any
triangulation has an ear (a triangle
containing two polygon edges).

Fi ll b i d ti

Since the polygon has n vertices while                           
any triangulation of it has n-2 triangles,
any triangulation has an ear (a triangle
containing two polygon edges).
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Finally, by induction on n:

Basis: Trivial if n=3.

Induction:  Cut off an ear.  3-color the remaining (n-1)-gon. 
Color the nth vertex with the third color different from the 
two on its supporting edge.
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A Matching Lower BoundA Matching Lower Bound

 Fact:  There exists a 
polygon with n verticespolygon with n vertices, 
for which n/3 guards are 
necessary.

 Therefore, n/3 guards 
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are needed in the worst 
case.

O(O(nn log log nn))--Time Polygon TriangulationTime Polygon Triangulation

 A simple polygon is called monotone with 
respect to a direction v if for any line ℓ p y
perpendicular to v, the intersection of the 
polygon with ℓ is connected.

 A polygon is called monotone if there exists 
any such direction v.

 A polygon that is monotone with respect to 
the x- (or y-) axis is called x- (or y-) 
monotone.
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y-monotone but not 
x-monotone polygon

Question 1: How can we check in O(n) 
time whether a polygon is y-monotone? vv

Question 2:  What is a polygon that is
monotone with respect to all directions?
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Triangulation Algorithm Triangulation Algorithm –– cont.cont.

1) Partition the polygon into 
t iy-monotone pieces

.(”חתיכות מונוטוניות“)

2) Triangulate each      
y-monotone piece 
separately.
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 Classifying polygon vertices:
start

yy--Monotone PolygonsMonotone Polygons

A start (resp., end) vertex is a 
vertex whose interior angle is less 
than  and its two neighboring 
vertices both lie below (resp., 
above) it. 

A split (resp., merge) vertex is     
a vertex whose interior angle      
is greater than  and its two

regular

start

merge

split
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is greater than  and its two 
neighboring vertices both lie 
below (resp., above) it.

All other vertices are regular. end

split
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yy--Monotone Polygons  (cont.)Monotone Polygons  (cont.)

 Theorem: A polygon without split                          
and merge vertices is y-monotone.

start

 Proof:  Since there are only                 
start/end/regular vertices, the                            
polygon must consist of two                                        
y-monotone chains.                                   

regular

end

merge

split
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 To partition a polygon to monotone pieces, eliminate 
split (merge) vertices by adding diagonals upward 
(downward) from the vertex.                            
Naturally, the diagonals must not intersect!

 Classify all vertices.
 Sweep the polygon from top to bottom. 
Maintain the edges intersected by                    

Monotone PartitioningMonotone Partitioning

the sweep line in a sweep line status            
(SLS sorted by x coordinates).

Maintain vertex events in an event              
queue (EQ sorted by y coordinates).
All events are known in advance!

 Eliminate split/merge vertices by         
connecting them to other vertices

ej
helper(ej)

ek
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connecting them to other vertices                     
(to be explained later).

 ▒ For each edge e, define helper(e) as            
the lowest vertex (seen so far) above the         
sweep line visible to the right of the edge.

 helper(e) is initialized by the upper endpoint of e.
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Monotone Partitioning (cont.)Monotone Partitioning (cont.)
 A split vertex may be connected 

to the helper vertex of the edge 
immediately to its left.

ej

helper(ej)
ek

immediately to its left.

 However, a merge vertex should 
be connected to a vertex which 
has not been processed yet!

 Clever idea:  Every merge vertex 

ei

vi

vi
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y g
v is the helper of some edge e, 
so that v will be resolved either

when e disappears; or
when v ceases to be the helper of e.

It will be the last time v can be 
resolved!

ej
helper(ej) ek

Vj+1

Monotone Partitioning AlgorithmMonotone Partitioning Algorithm
 Input:  A polygon P, given as a list of vertices  

ordered counterclockwise.  The edge ei immediately 
follows the vertex vfollows the vertex vi.

 Construct EQ containing the vertices of P sorted by 
their y-coordinates.  (In case two or more vertices 
have the same y-coordinate, the vertex with the 
smaller x-coordinate has a higher priority.)

 Initialize SLS to be empty.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 20

While EQ is not empty:
Pop vertex v;

Handle v.

(No new events are generated during execution.)

 Idea:  No split/merge vertex remains unhandled!
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 Handling a start vertex (vi):

Monotone PartitioningMonotone Partitioning

v Handling a start vertex (vi):
Add ei to SLS 

helper(ei) := vi

 Implementation detail:   
Only “left” edges (for which 
the polygon is on the right)

e1

e2

e3

e7
e8

e9

v2

v3

v5

v7

v8

v9

v1
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the polygon is on the right) 
need a helper and are thus 
kept in the status.

e4

e5
e6

v4
5

v6

 Handling an end vertex (vi):
If helper(ei-1) is a merge 
vertex then connect v to v8

Monotone PartitioningMonotone Partitioning

v1

vertex, then connect vi to 
helper(ei-1)   (Why?!)

Remove ei-1 from SLS

e1

e2
e3

e4

e5
e6

e7
e8

e9

v2

v3

v4
v5

v6

v7

8

v9
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6
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 Handling a split vertex (vi): 
Find in SLS the edge ej

directly to the left of v

Monotone PartitioningMonotone Partitioning

v1directly to the left of vi

Connect vi to helper(ej)

helper(ej) := vi

Insert ei into SLS

helper(ei) := vi

e1

e2

e3

e7
e8

e9

v2

v3

v5 v

v8

v9

1
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e4

e5 e6

v4
5

v6

v7

Monotone PartitioningMonotone Partitioning

 Handling a merge vertex (vi): 
If helper(ei-1) is a merge vertex, 
then connect v to helper(e )

v1

e1

e2

e3

e7e9

e10

v2

v3

v5

v7

v9

v10

then connect vi to helper(ei-1)

Remove ei-1 from SLS

Find in SLS the edge ej directly 
to the left of vi

If helper(ej) is a merge vertex, 
then connect vi to helper(ej)

helper(ej) := vi

v8

e8
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e4

e5

e6v4
5

v6
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Monotone PartitioningMonotone Partitioning

 Handling a regular vertex (vi): 
If the polygon’s interior lies to 
the left of v then:

v2

v7

the left of vi then:
Find in SLS the edge ej directly 
to the left of vi

If helper(ej) is a merge vertex, 
then connect vi to helper(ej)

helper(ej) := vi

Else:
If helper(e ) is a merge vertex

e7
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If helper(ei-1) is a merge vertex, 
then connect vi to helper(ei-1)

Remove ei-1 from SLS

Insert ei into SLS

helper(ei) := vi

e6

Proof of Correctness:  Split VerticesProof of Correctness:  Split Vertices

 Assume that the split vertex v5 was connected to v2.

 Assume that s=v5v2 intersects another original edge e.
v

 Draw horizontal lines through v5 and v2.

Where can the endpoint of e, that                                   
is to the left of s, be?

Below ℓ1:  Impossible.  (Why?)

Between ℓ1 and ℓ2:  Ditto.  (Why?)

Above ℓ2:  Ditto.  (Why?)

e1

e2e3

e7e8

e9

v2

v3 v7

v8

v9

v1

ℓ2

ℓ1

ss
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 Now assume that s intersects                                
another diagonal.  Why can’t that be?

 Conclusion:
Split events are resolved correctly.

e4

e5

e6v4
v5

v6
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Proof of Correctness (cont.)Proof of Correctness (cont.)

Merge vertices:  Exercise.

 Complete the details of the proof as an exercise.
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Triangulating a Triangulating a yy--monotone Polygonmonotone Polygon

 Sweep the polygon from top to bottom

In Theory

 Sweep the polygon from top to bottom.

 Greedily triangulate anything possible 
above the sweep line, and then forget  
about this region.

When we process a vertex v, the unhandled 
region above it always has a simple structure: 
Two y-monotone (left and right) chains, each 
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containing at least one edge.  If a chain consists 
of two or more edges, it is reflex, and the other 
chain consists of a single edge whose bottom 
endpoint has not been handled yet.

Each diagonal is added in O(1) time.
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Triangulating a YTriangulating a Y--monotone Polygonmonotone Polygon

 Continue sweeping while one                                  
chain contains only one edge

In Practice

chain contains only one edge,                                 
while the other edge is concave.

When a “convex edge” appears                                    
in the concave chain, triangulate                                  
as much as possible by connecting                            
the new vertices to all visible                               
vertices of the concave chain. 
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When the edge in the other chain terminates, connect it 
to all the vertices of the concave chain using a “fan”.

 Time complexity: O(k), where k is the complexity of the 
polygon.
Question:  Why?!

Total TimeTotal Time--Complexity AnalysisComplexity Analysis

 Partitioning the polygon into monotone pieces:

O(n log n)O(n log n)

(every vertex event is handled in O(log n) time)

 Triangulating all the monotone pieces:     (n)

(every vertex event is handled in (1) time)

Total: O(n log n)
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Historical PerspectiveHistorical Perspective
 O(n2): Diagonal insertion
 O(n log n): Lee and Preparata

(Monotone decomposition, 1977)(Monotone decomposition, 1977)
Avis and Toussaint (1981)
Chazelle (1982)

Optimal??

 O(n log log n): Tarjan and Van Wyk (1988)
 O(n log* n): Randomized:
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Clarkson, Tarjan, and Van Wyk (1989)
Seidel (Trapezoidal decomposition, 1991)
Devillers (1992)

 (n): Optimal (yet deterministic):
Chazelle (1991)


