|
| |
Computational Geometry

Chapter 6

Point Location

Center for Graphics and Geometric Computing, Technion

€N

&N

-

- Problem Definition

U Preprocess a planar map S.
Given a query point p, report
the face of S containing p.

s
B
Q Goal: O(n)-size data structure P
that enables O(log n) query time. q

Q Application:
Which state is Baltimore located in?

Answer: Maryland

Q Trivial Solution: O(n) query time, where n is
the complexity of the map.
(Question: Why is the query time only O(n)?)

Center for Graphics and Geometric Computing, Technion

)

14,3

- Naive Solution

Q Draw vertical lines through all
the vertices of the subdivision.

Q Store the x-coordinates of the
vertices in an ordered binary
tree.

QO Within each slab, sort the
segments separately along y.

QO Query time: O(log n).

O Problem: Too delicate
subdivision, of size ®(n?) in
the worst case.

(Give such an example!)

Center for Graphics and Geometric Computing, Technion

NS

&z

-

= The Trapezoidal Map

U Construct a bounding box.

U Assume general position: unique x coordinates.

U Extend upward and downward the
vertical line from each vertex until
it touches another segment.

O This works
also for
noncrossing
line
segments.

= = e e = e = = =

Center for Graphics and Geometric Computing, Technion

Properties

N\

I
U Contains triangles
and trapezoids. Ll |
U Each trapezoid or triangle is determined:
By two vertices that define vertical sides; and
By two segments that define nonvertical sides.

U A refinement of the original subdivision.

8
Center for Graphics and Geometric Computing, Technion 5 L’,'f"‘ -
-
I .
Notation
Every trapezoid (or triangle) A is defined by
U Left(A): a segment endpoint (right or left);
U Right(A): a segment endpoint (right or left);
U Top(A): asegment;
U Bottom(A): a segment.
A

Center for Graphics and Geometric Computing, Technion

B |
Complexity
U Theorem (linear complexity):
A trapezoidal map of n segments
contains at most 6n+4 vertices
and at most 3n+1 faces.

U Proof:
1. Vertices:

2n + 4n + 4 = 6n+4
)) T

original extensions box

2. Faces: Count Left(A). v d A f
2n + n + 1 = 3n+1 Why does the proo

N hold for “degenerate”

to1 O tons?
left e.p. right e.p. box situations? (.fﬂ
J
Center for Graphics and Geometric Computing, Technion 7 L?k“‘ 2

=== == == === =
1

Question:

B
Map Data Structure
U Possibly by DCEL. -

An alternative:
For each trapezoid store:

U The vertices that define its
right and left sides;

U The top and bottom segments;
U The (up to two) neighboring

trapezoids on right and left; Note: Computing any
Q (Optional) The neighboring trapezoid from the
trapezoids from above and trapezoidal structure
below. This number might be can be done in
linear in n, so only the leftmost ~ constant time.
of these trapezoids is stored. (f:]
Center for Graphics and Geometric Computing, Technion 8 e

~

Search Structure: Branching Rules

U Query point g, search-structure node s.
U s is a segment endpoint:

g is to the right of s: go right;
g is to the left of s: go left;

U s is a segment:

gis below s: goright;
gis above s: go left;

Center for Graphics and Geometric Computing, Technion

&N

€N

Center for Graphics and Geometric Computing, Technion

(

Center for Graphics and Geometric Computing, Technion

-

1] Search Structure: Construction

U Find a Bounding Box.

U Randomly permute the
segments.

U Insert the segments one by
one into the map.

U Update the map and search
structure in each insertion.
U The size of the map is ©(n).
(This was proven earlier.)

U The size of the search

structure depends on the
order of insertion.

[T - e

Center for Graphics and Geometric Computing, Technion

U Find in the existing structure the face

that contains the left endpoint
of the new segment. (*)

U Find all other trapezoids
intersected by this segment
by moving to the right. (In
each move choose between
two options: Up or Down.)

U Update the map M, and the

r

. Updating the Structures (High Level)

search structure D,. | o
(*) Note: Since endpoints may
be shared by segments, we Lt- --
need to consider its segment)
while searching. ey
Center for Graphics and Geometric Computing, Technion 13 L’,k"“
I |
il .
Update: Simple Case
. : M.
O The segment is contained i --
entirely in one trapezoid. : !
U In M, ;: Split the trapezoid into : _— |
four trapezoids. : | !
|
U In D,;: The leaf will be replaced ! |
by a subtree. T I !
I
U Everything is ! |
done in O(1) I !
time. : !
1 |
v_b v ____1 _ _I
LAl 8 [c|[po] e
14 (:..‘ 2

Center for Graphics and Geometric Computing, Technion

~

Update M: General Case

0 General Case: The ith

U Split trapezoids.
U Merge trapezoids that

U Total update time: O(k;).

segment intersects with
ki>1 trapezoids.

can be united.

7z s
Center for Graphics and Geometric Computing, Technion 15 L’,'f"‘ "J
™
Lim | |
Updating D: Split
O Each inner r
trapezoid in D;;
is replaced by: /
L A [[& | 1
U Each outer
(e.g., left) P
trapezoid in D4
is replaced by:
L~ | e |[c| e
J

Center for Graphics and Geometric Computing, Technion

I .|

U Leaves are eliminated and

Updating D: Merge

replaced by one common leaf. E

U Total update time: O(k;). K

Si S
G H B
L <

i o

(.7

17 N

Center for Graphics and Geometric Computing, Technion L’,k“
I |

Construction: Worst-Case Analysis

U Each segment adds trees of depth at most (4-1=) 3,

so the depth of D, is at most 3i.

U Query time (depth of D;): O(i), ©(i) in the worst case.
O The it segment, s;, may intersect with O(i) trapezoids

(®(i) in the worst case)!

U The size of D and its construction time are then

bounded from above by

> 0(i) =0(n*)

Center for Graphics and Geometric Computing, Technion L," >

10

-

0C] . .
Eonstructlon: Worst-Case Analysis (cont.)

Worst-case example:

Center for Graphics and Geometric Computing, Technion

-

0C] . .
Eonstructlon: Worst-Case Analysis (cont.)

Worst-case example:

Center for Graphics and Geometric Computing, Technion

O(n)

11

-

0C] . .
Eonstructlon: Worst-Case Analysis (cont.)

Worst-case example:

n
The size of D and its 2 n
construction time is Z@(l) + Z@(n) =0(n%)

in the worst case. i=1

i= n +1
2 P
21 (/
Center for Graphics and Geometric Computing, Technion L*,IJ'“

I |

Average-Case Analysis

U We first look for the expected depth of D.
U g: A point, to be searched for in D.

U p;: The probability that a new vertex was created in
the path leading to g in the it" iteration.

Compute p; by backward analysis:
U A,(M;,): The trapezoid containing g in M.
U Since a new vertex was created, A,(M) = Ay(M;.,).
Q Delete s; from M,

p; = Prob[A,(M) = A((M)] < 4/i. (Why?)

Center for Graphics and Geometric Computing, Technion Y

12

= Expected Depth of D

Q x; The number of vertices created in the ith
iteration in the path leading to the leaf q.

U The expected length of the path leading to Q:

E{ixi}:iE[xi]si(Spi)§i¥:O(log n).

A
{)
Center for Graphics and Geometric Computing, Technion 23 L’,'f"‘ -
I ™
[:
Expected Size of D
U Define an indicator
1 Adisappearsfrom M, if s is removed
0,(A,S) = .
0 otherwise
Q k;: Number of leaves created in the i" step.
O S;: The set of the first i segments.
U Average on s:
E[ki]:ilz zéi(Avs) =1 Z z5i(A’S)
seS; \ AeM; seS; AeM;
<1(4|M;|) (same backward analysis)
=20 =0(1).
A
)

24

)

Center for Graphics and Geometric Computing, Technion

13

I ™

0 ki-1: Number of internal nodes created in the it" step.

Expected Size of D (cont.)

U Total size:

o(n) + E(Z (k, —1)] = 0(n)+ E(Z kij =0(n).
))

leaves internal

Wa
Center for Graphics and Geometric Computing, Technion % J(:"‘ "J
. L
2
Expected Construction Time of D
n
2. (O(E(depth;)) + O(E[k;]))
i=1
/
= (O(logi)+0O(1)) =O(nlogn)
i=1
Finding The rest of
the first the work in
trapezoid the ith step
Wa
Center for Graphics and Geometric Computing, Technion 26 J(:"‘ "J
. L

14

= Handling Degeneracies

U What happens if two segment endpoints
have the same x coordinate?

0 Use a shearing X X+ &Yy
transformation: (0[j — [j
y y

U Higher points will move more to the right.

U ¢ should be small enough so that this
transform will not change the order of two
points with different x coordinates.

U In fact, there is no need to shear the plane.
Comparison rules mimic the shearing.

U Prove: The entire algorithm remains correct.

Center for Graphics and Geometric Computing, Technion

v

