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Computational GeometryComputational Geometry

Chapter Chapter 66

Point LocationPoint Location
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Problem DefinitionProblem Definition
 Preprocess a planar map S.                   

Given a query point p, report                        
the face of S containing p. S

Ag p

 Goal: O(n)-size data structure                   
that enables O(log n) query time.

 Application:                                            
Which state is Baltimore located in?
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Answer:  Maryland

 Trivial Solution: O(n) query time, where n is 
the complexity of the map.                
(Question:  Why is the query time only O(n)?)
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Naïve SolutionNaïve Solution

 Draw vertical lines through all 
the vertices of the subdivision.

 Store the x-coordinates of the 
vertices in an ordered binary 
tree.

Within each slab, sort the 
segments separately along y.

 Query time: O(log n)
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 Query time:  O(log n).

 Problem:  Too delicate 
subdivision, of size (n2) in 
the worst case.

(Give such an example!)

The Trapezoidal MapThe Trapezoidal Map

 Construct a bounding box.
 Assume general position:  unique x coordinates.g p q

 Extend upward and downward the                         
vertical line from each vertex until                                   
it touches another segment.

 This works                                                                  
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also for                                                                      
noncrossing                                                                  
line                                                                    
segments.
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PropertiesProperties

 Contains triangles                                              
and trapezoids.
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and trapezoids.
 Each trapezoid or triangle is determined:

By two vertices that define vertical sides; and
By two segments that define nonvertical sides.

 A refinement of the original subdivision.

NotationNotation

Every trapezoid (or triangle)  is defined by

 Left(): a segment endpoint (right or left);

 Right(): a segment endpoint (right or left);

 Top(): a segment;

 Bottom(): a segment.
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ComplexityComplexity

 Theorem (linear complexity):
A trapezoidal map of n segments 
contains at most 6n+4 erticescontains at most 6n+4 vertices 
and at most 3n+1 faces.

 Proof:

1. Vertices:

2n +   4n +   4    =    6n + 4      
  

i i l t i bi i l t i b
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22. . Faces:   Count Left().

2n +   n +   1    =    3n + 1      
  

original  extensions  boxoriginal  extensions  box

left e.p.  right e.p.  boxleft e.p.  right e.p.  box

Question:Question:

Why does the proof Why does the proof 
hold for “degenerate” hold for “degenerate” 
situations?situations?

Map Data StructureMap Data Structure
 Possibly by DCEL.

An alternative:An alternative:
For each trapezoid store:
 The vertices that define its 

right and left sides;
 The top and bottom segments;
 The (up to two) neighboring 

trapezoids on right and left; NoteNote: Computing any: Computing any
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trapezoids on right and left;
 (Optional)  The neighboring 

trapezoids from above and 
below.  This number might be 
linear in n, so only the leftmost 
of these trapezoids is stored.

NoteNote:  Computing any :  Computing any 
trapezoid from the trapezoid from the 
trapezoidal structure trapezoidal structure 
can be done in can be done in 
constant time.constant time.
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Search Structure:  Branching RulesSearch Structure:  Branching Rules

 Query point q, search-structure node s.

 s is a segment endpoint:
q is to the right of s:  go right;

q is to the left of s:  go left;

 s is a segment:
q is below s:  go right;

q is above s:  go left;
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The DAG Search StructureThe DAG Search Structure
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Using the Search StructureUsing the Search Structure
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Search Structure:  ConstructionSearch Structure:  Construction

 Find a Bounding Box.

 Randomly permute the 
segments.

 Insert the segments one by 
one into the map. 

 Update the map and search 
structure in each insertion. 

 The size of the map is (n).  
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p ( )
(This was proven earlier.)

 The size of the search 
structure depends on the 
order of insertion.
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Updating the Structures (High Level)Updating the Structures (High Level)

 Find in the existing structure the face 
that contains the left endpoint               
of the new segment (*)of the new segment.  ( )

 Find all other trapezoids            
intersected by this segment                  
by moving to the right.  (In                          
each move choose between               
two options: Up or Down.)

 Update the map Mi and the            
h D
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search structure Di.

(*) Note(*) Note:  Since endpoints may :  Since endpoints may 
be shared by segments, we be shared by segments, we 
need to consider its segment need to consider its segment 
while searching.while searching.

Update:  Simple CaseUpdate:  Simple Case
 The segment is contained 

entirely in one trapezoid.

 In M : Split the trapezoid into

Mi-1

 In Mi-1:  Split the trapezoid into 
four trapezoids.

 In Di-1:  The leaf will be replaced 
by a subtree.

 Everything is                         
done in O(1)                          
ti
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 General Case:  The ith

segment intersects with 
k >1 trape oids

Update Update MM:  General Case:  General Case

ki>1 trapezoids.

 Split trapezoids. 

Merge trapezoids that 
can be united.

 Total update time:  O(ki). 
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Updating Updating DD:  Split:  Split

 Each inner
trapezoid in Di-1

is replaced b Siis replaced by:

 Each outer
(e.g., left) 

i

A B

P
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( g , )
trapezoid in Di-1

is replaced by:
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Updating Updating DD:  Merge:  Merge

C
E

 Leaves are eliminated and 
replaced by one common leaf

Si Si Si
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replaced by one common leaf.

 Total update time:  O(ki).
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Construction:  WorstConstruction:  Worst--Case AnalysisCase Analysis

 Each segment adds trees of depth at most (4-1=) 3, 
so the depth of Di is at most 3i.p i

 Query time (depth of Di):  O(i),  (i) in the worst case.

 The ith segment, si, may intersect with O(i) trapezoids 
((i) in the worst case)!

 The size of D and its construction time are then 
bounded from above by

n
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Construction:  WorstConstruction:  Worst--Case Analysis Case Analysis (cont.)(cont.)

Worst-case example:
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Construction:  WorstConstruction:  Worst--Case Analysis Case Analysis (cont.)(cont.)

Worst-case example:

O(O(nn))
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Construction:  WorstConstruction:  Worst--Case Analysis Case Analysis (cont.)(cont.)

Worst-case example:
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The size of D and its
construction time is
in the worst case.
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AverageAverage--Case AnalysisCase Analysis

We first look for the expected depth of D.

 q:  A point, to be searched for in D.

 pi:  The probability that a new vertex was created in 
the path leading to q in the ith iteration.

Compute pi by backward analysis:

 q(Mi-1):  The trapezoid containing q in Mi-1.

 Since a new vertex was created  (M )   (M )
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 Since a new vertex was created, q(Mi)  q(Mi-1).

 Delete si from Mi.

pi = Prob[q(Mi)  q(Mi-1)]  4/i.   (Why?)
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Expected Depth of Expected Depth of DD

 xi:  The number of vertices created in the ith

iteration in the path leading to the leaf q.

 The expected length of the path leading to q:
q
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 The expected length of the path leading to q:

  .) log(O)3(EE
1 1 1
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Expected Size of Expected Size of DD

 Define an indicator


 


removed is   if  from disappears    1

)(
sM

s i

 ki:  Number of leaves created in the ith step.
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Expected Size of Expected Size of DD (cont.)(cont.)
 ki-1:  Number of internal nodes created in the ith step.
 Total size:

 
leaves        internal leaves        internal 
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Expected Construction Time of Expected Construction Time of DD
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Finding 
the first 

trapezoid

The rest of 
the work in 
the ith step
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Handling DegeneraciesHandling Degeneracies

What happens if two segment endpoints 
have the same x coordinate?

 Use a shearing                              
transformation:

 Higher points will move more to the right.

  should be small enough so that this 
transform will not change the order of two 
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g
points with different x coordinates.

 In fact, there is no need to shear the plane.  
Comparison rules mimic the shearing.

 Prove:  The entire algorithm remains correct.


