
1

Computational GeometryComputational Geometry

Chapter Chapter 66

Point LocationPoint Location

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 1

Problem DefinitionProblem Definition
 Preprocess a planar map S.

Given a query point p, report
the face of S containing p. S

Ag p

 Goal: O(n)-size data structure
that enables O(log n) query time.

 Application:
Which state is Baltimore located in?

p

D

E

G

F

C

B

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 2

Answer: Maryland

 Trivial Solution: O(n) query time, where n is
the complexity of the map.
(Question: Why is the query time only O(n)?)

2

Naïve SolutionNaïve Solution

 Draw vertical lines through all
the vertices of the subdivision.

 Store the x-coordinates of the
vertices in an ordered binary
tree.

Within each slab, sort the
segments separately along y.

 Query time: O(log n)

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 3

 Query time: O(log n).

 Problem: Too delicate
subdivision, of size (n2) in
the worst case.

(Give such an example!)

The Trapezoidal MapThe Trapezoidal Map

 Construct a bounding box.
 Assume general position: unique x coordinates.g p q

 Extend upward and downward the
vertical line from each vertex until
it touches another segment.

 This works

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 4

also for
noncrossing
line
segments.

3

PropertiesProperties

 Contains triangles
and trapezoids.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 5

and trapezoids.
 Each trapezoid or triangle is determined:

By two vertices that define vertical sides; and
By two segments that define nonvertical sides.

 A refinement of the original subdivision.

NotationNotation

Every trapezoid (or triangle)  is defined by

 Left(): a segment endpoint (right or left);

 Right(): a segment endpoint (right or left);

 Top(): a segment;

 Bottom(): a segment.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 6

4

ComplexityComplexity

 Theorem (linear complexity):
A trapezoidal map of n segments
contains at most 6n+4 erticescontains at most 6n+4 vertices
and at most 3n+1 faces.

 Proof:

1. Vertices:

2n + 4n + 4 = 6n + 4
  

i i l t i bi i l t i b

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 7

22. . Faces: Count Left().

2n + n + 1 = 3n + 1
  

original extensions boxoriginal extensions box

left e.p. right e.p. boxleft e.p. right e.p. box

Question:Question:

Why does the proof Why does the proof
hold for “degenerate” hold for “degenerate”
situations?situations?

Map Data StructureMap Data Structure
 Possibly by DCEL.

An alternative:An alternative:
For each trapezoid store:
 The vertices that define its

right and left sides;
 The top and bottom segments;
 The (up to two) neighboring

trapezoids on right and left; NoteNote: Computing any: Computing any

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 8

trapezoids on right and left;
 (Optional) The neighboring

trapezoids from above and
below. This number might be
linear in n, so only the leftmost
of these trapezoids is stored.

NoteNote: Computing any : Computing any
trapezoid from the trapezoid from the
trapezoidal structure trapezoidal structure
can be done in can be done in
constant time.constant time.

5

Search Structure: Branching RulesSearch Structure: Branching Rules

 Query point q, search-structure node s.

 s is a segment endpoint:
q is to the right of s: go right;

q is to the left of s: go left;

 s is a segment:
q is below s: go right;

q is above s: go left;

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 9

Q1

P1 Q2

The DAG Search StructureThe DAG Search Structure

B
A

D

E H
J

K

P3

Q3S3

P3

S3

C

S1

P2

A

S S

Q3

S S

C

F

G

J

P1

P2

Q1

Q2

S1

S2

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 10

B

CS3 S2

D E F G D H

S2 S3

J K

6

Q1

P1 Q2

Using the Search StructureUsing the Search Structure

B
A

D

E H
J

K

P3

Q3S3

P3

S3

C

S1

P2

A

S S

Q3

S S

C

F

G

J

P1

P2

Q1

Q2

S1

S2

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 11

B

CS3 S2

D E F G D H

S2 S3

J K

Search Structure: ConstructionSearch Structure: Construction

 Find a Bounding Box.

 Randomly permute the
segments.

 Insert the segments one by
one into the map.

 Update the map and search
structure in each insertion.

 The size of the map is (n).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 12

p ()
(This was proven earlier.)

 The size of the search
structure depends on the
order of insertion.

7

Updating the Structures (High Level)Updating the Structures (High Level)

 Find in the existing structure the face
that contains the left endpoint
of the new segment (*)of the new segment. ()

 Find all other trapezoids
intersected by this segment
by moving to the right. (In
each move choose between
two options: Up or Down.)

 Update the map Mi and the
h D

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 13

search structure Di.

(*) Note(*) Note: Since endpoints may : Since endpoints may
be shared by segments, we be shared by segments, we
need to consider its segment need to consider its segment
while searching.while searching.

Update: Simple CaseUpdate: Simple Case
 The segment is contained

entirely in one trapezoid.

 In M : Split the trapezoid into

Mi-1

 In Mi-1: Split the trapezoid into
four trapezoids.

 In Di-1: The leaf will be replaced
by a subtree.

 Everything is
done in O(1)
ti

Pi

Q A

B
D

T

Qi

Pi

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 14

time.

A

Qi

B C

Si

D

A
C

Pi

8

 General Case: The ith

segment intersects with
k >1 trape oids

Update Update MM: General Case: General Case

ki>1 trapezoids.

 Split trapezoids.

Merge trapezoids that
can be united.

 Total update time: O(ki).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 15

Updating Updating DD: Split: Split

 Each inner
trapezoid in Di-1

is replaced b Siis replaced by:

 Each outer
(e.g., left)

i

A B

P

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 16

(g ,)
trapezoid in Di-1

is replaced by:

Pi

A

Si

B C

9

Updating Updating DD: Merge: Merge

C
E

 Leaves are eliminated and
replaced by one common leaf

Si Si Si

A

B D

E

FK
G

H

Si

L

replaced by one common leaf.

 Total update time: O(ki).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 17

C EB D F

K

H AG

L

Construction: WorstConstruction: Worst--Case AnalysisCase Analysis

 Each segment adds trees of depth at most (4-1=) 3,
so the depth of Di is at most 3i.p i

 Query time (depth of Di): O(i), (i) in the worst case.

 The ith segment, si, may intersect with O(i) trapezoids
((i) in the worst case)!

 The size of D and its construction time are then
bounded from above by

n

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 18

.



n

i

nOiO
1

2)()(

10

Construction: WorstConstruction: Worst--Case Analysis Case Analysis (cont.)(cont.)

Worst-case example:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 19

Construction: WorstConstruction: Worst--Case Analysis Case Analysis (cont.)(cont.)

Worst-case example:

O(O(nn))

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 20

11

Construction: WorstConstruction: Worst--Case Analysis Case Analysis (cont.)(cont.)

Worst-case example:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 21

The size of D and its
construction time is
in the worst case.





n

n
i

n

i

nn
1

2

2
2

1

)()()1(

AverageAverage--Case AnalysisCase Analysis

We first look for the expected depth of D.

 q: A point, to be searched for in D.

 pi: The probability that a new vertex was created in
the path leading to q in the ith iteration.

Compute pi by backward analysis:

 q(Mi-1): The trapezoid containing q in Mi-1.

 Since a new vertex was created  (M)   (M)

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 22

 Since a new vertex was created, q(Mi)  q(Mi-1).

 Delete si from Mi.

pi = Prob[q(Mi)  q(Mi-1)]  4/i. (Why?)

12

Expected Depth of Expected Depth of DD

 xi: The number of vertices created in the ith

iteration in the path leading to the leaf q.

 The expected length of the path leading to q:
q

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 23

 The expected length of the path leading to q:

  .) log(O)3(EE
1 1 1

12

1
  
  








 n

i

n

i

n

i
iii

n

i
i npxx

Expected Size of Expected Size of DD

 Define an indicator


 


removed is if from disappears 1

)(
sM

s i

 ki: Number of leaves created in the ith step.

 Si: The set of the first i segments.

 Average on s:




otherwise 0
),(si

)()(][E 11













    ssk 



Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 24

).1(O

analysis) backward (same |)|4(

),(),(][E

)(O

1

















   
  

i
i

ii

Ss M
ii

Ss M
iii

M

ssk
i ii i



13

Expected Size of Expected Size of DD (cont.)(cont.)
 ki-1: Number of internal nodes created in the ith step.
 Total size:

 
leaves internal leaves internal

).(OE)(O)1(E)(O
11

nknkn
n

i
i

n

i
i 

















 



s

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 25

Expected Construction Time of Expected Construction Time of DD

 ])[E())E(depth(kOO
n

ii 

)log())1()(log(
1

1

nnOOiO
n

i

i






Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 26

Finding
the first

trapezoid

The rest of
the work in
the ith step

14

Handling DegeneraciesHandling Degeneracies

What happens if two segment endpoints
have the same x coordinate?

 Use a shearing
transformation:

 Higher points will move more to the right.

  should be small enough so that this
transform will not change the order of two








 









y

yx

y

x 


Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 27

g
points with different x coordinates.

 In fact, there is no need to shear the plane.
Comparison rules mimic the shearing.

 Prove: The entire algorithm remains correct.

