Computational Geometry (CS 236719)

http://www.cs.technion.ac.il/~barequet/teaching/cg/fa21

Chapter 1 Introduction



Copyright 2002-2015

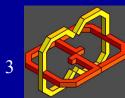
Prof. Gill Barequet

Center for Graphics and Geometric Computing Dept. of Computer Science The Technion Haifa

Thanks to **Michal Urbach-Aharon** who prepared the initial version of the presentations of this course

Staff (Fall 2021-22 תשפייב)

Lecturer: Prof. Gill Barequet E-mail: <u>barequet@cs.technion.ac.il</u> TA: Ms. Amani Shhadi E-mail: amani.shhadi@cs.technion.ac.il Office hours: Any time (by appointment) Lecture: Monday 10:30-12:30 Recitation: Monday 12:30-13:30 Exams: Term A: Monday, January 31, 2022 Term B: Hopefully no need to!

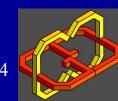


Bibliography

Computational Geometry: Algorithms and Applications,

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
3rd edition, Springer-Verlag, 2008.

Course slides



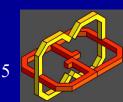
Assessment

Three dry homework assignments (~12.5%)

One wet (running) exercise (~12.5%)

No midterm exam

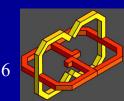
Final exam (75%)



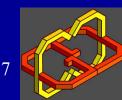
Syllabus

- Introduction Basic techniques Basic data structures Polygon triangulation Linear programming Range searching Point location Voronoi diagrams Duality and Arrangements Delaunay triangulations
- Applications and miscellaneous

Prerequisite course: Data Structures (Recommended but not mandatory: Algorithms)

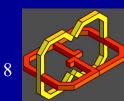


Questions?



Lecture Topics

Sample problems
Basic concepts
Convex-hull algorithms

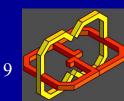


Sample Problems

Convex Hull demo

Voronoi Diagram demo

Visibility demo



Nearest Neighbor

Problem definition:

Input: A set of points (*sites*) P in the plane and a query point q.

• Output: The point $p \in P$ closest to q among all points in P.

Rules of the game:
 One point set, multiple queries

Application: Cellphones Store Locator

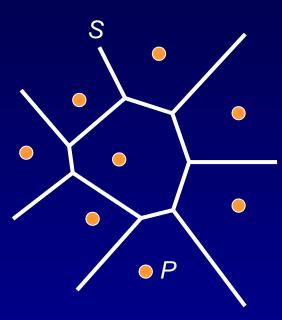
 $\bullet P$

The Voronoi Diagram

Problem definition:

Input: A set of points (*sites*) S in the plane.

Output: A planar subdivision S into cells, one per site. The cell corresponding to $p \in P$ contains all the points to which p is the closest.



Point Location

Problem definition:

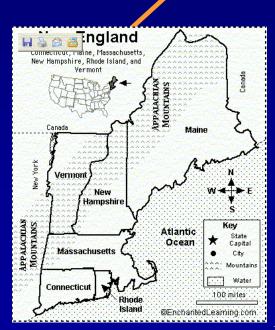
Input: A partition S of the plane into cells and a query point p.

• Output: The cell $C \in S$ containing p.

Rules of the game:

 One partition, multiple queries

 Applications: Nearest neighbor State locator



C

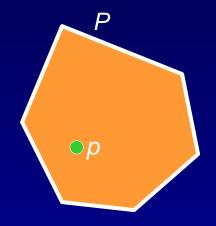
S

p

Point in Polygon

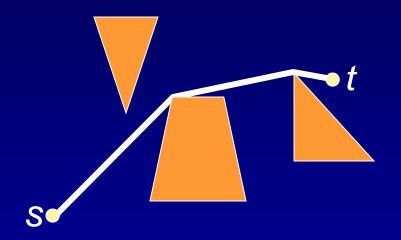
Problem definition:

- Input: A polygon P in the plane and a query point p.
- Output: *true* if $p \in P$, else *false*.



Rules of the game:One polygon, multiple queries

Shortest Path



Problem definition:

- Input: Obstacles locations and *query* endpoints *s* and *t*.
- Output: The shortest path between s and t that avoids all obstacles.

Rules of the game:
 One obstacle set, multiple queries (*s*,*t*).

Application: Robotics.

Range Searching and Counting

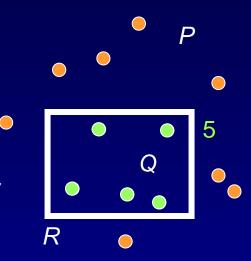
Problem definition:

Input: A set of points P in the plane and a query rectangle R.

Output:

(report) The subset $Q \subseteq P$ contained in *R*; or (count) The cardinality of *Q*.

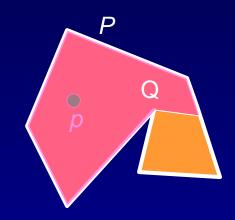
Rules of the game:
 One point set, multiple queries.
 Application: Urban planning



Visibility

Problem definition:

- Input: A polygon P in the plane and a query point p.
- Output: The polygon $Q \subseteq P$ containing all points in *P* visible to *p*.



Rules of the game:
 One polygon, multiple queries
 Applications: Security

Questions?

Basic Concepts

Representing Geometric Elements

Representation of a line segment by four real numbers:

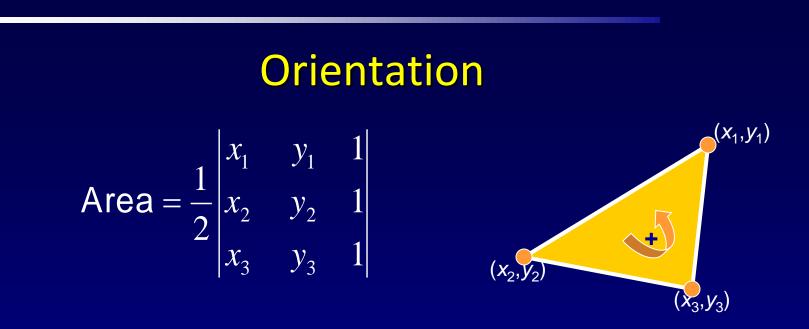
- **Two endpoints** (p_1 and p_2)
- One endpoint (p₁), vector direction (v) and parameter interval length (d)
 - (Question: where did the extra parameter come from?)
- One endpoint (p_1), a slope (α), and length (d)
- Other options...
- Unique representation?

Different representations may affect the running times of algorithms!

 p_2

a

 p_1



- The sign of the area indicates the orientation of the points.
- Positive area = counterclockwise orientation = left turn.
- $\Box \text{ Negative area} = \text{clockwise orientation} = \text{right turn.}$
- Question: How can this be used to determine whether a given point is "above" or "below" a given line? (Hint: ... or a line segment?)
 (Degenerate instances?)

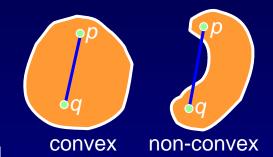
Complexity (reminder)

Symbol	Definition	"Nickname"
f(n) = O(g(n))	$\exists N, C \forall n > N f(n)/g(n) \leq C$	"≤"
f(n) = o(g(n))	$\lim_{n\to\infty} f(n)/g(n) = 0$	"<"
$f(n) = \Theta(g(n))$	f(n) = O(g(n)) and g(n) = O(f(n))	"="
$f(n) = \Omega(g(n))$	g(n) = O(f(n))	"≥"
$f(n) = \omega(g(n))$	g(n) = o(f(n))	">"

Convex Hull Algorithms

Convexity and Convex Hull

Definition: A set S is *convex* if for any pair of points $p,q \in S$, the entire line segment $pq \subseteq S$.



- The convex hull (קמור) of a set S is the minimal convex set that contains S.
- Another (equivalent) definition: The intersection of all convex sets that contain S.
- Question: Why should the boundary of the convex hull of a point set be a polygon whose vertices are a subset of the points?

CH(S)

Convex Hull: Naive Algorithm

Description:

- For each pair of points construct its connecting segment and supporting line.
- Find all the segments whose supporting lines divide the plane into two halves, such that one half plane contains *all* the other points.
- Construct the convex hull out of these segments.

Time complexity (for *n* points):

Number of point pairs:

Space complexity: $\Theta(n)$

Center for Graphics and Geometric Computing, Technion

 $\binom{n}{2} = \Theta(n^2)$

Yes

Possible Pitfalls

Degenerate cases, e.g., 3 collinear points, may harm the correctness of the algorithm. All, or none, of the segments AB, BC and AC will be included in the convex hull.
Question: How can we solve the problem?

Numerical problems: We might conclude that none of the three segments (or a wrong pair of them) belongs to the convex hull.

Question: How is collinearity detected?

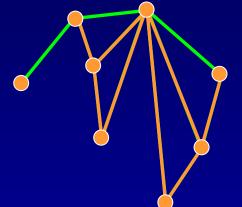
B

Convex Hull: Graham's Scan

Algorithm:

- Sort the points according to their *x* coordinates.
- Construct the upper boundary by scanning the points in the sorted order and performing only "right turns" (trim off "left turns").
- Construct the lower boundary in the same manner.
- Concatenate the two boundaries.
- **Time Complexity:** $O(n \log n)$ (only!)
- May be implemented using a stack

Question: How do we check for a "right turn"?



The Algorithm

 \square Input: Point set $\{p_i\}$. Sort the points in increasing order of x coordinates: $p_1, ..., p_n$ **D** Push(S, p_1); Push(S, p_2); \Box For *i* = 3 to *n* do While Size(S) \geq 2 and Orient(p_i ,top(S),second(S)) \leq 0 do Pop(S);Push(S, p_i); Output S.

Graham's Scan: Time Complexity

Sorting: $O(n \log n)$

If D_i is the number of points popped on processing p_i ,

time =
$$\sum_{i=1}^{n} (D_i + 1) = n + \sum_{i=1}^{n} D$$

Naively, the last term can be quadratic in *n*; But...
 Each point is pushed on the stack only once.
 Once a point is popped, it cannot be popped again.

$$\Box$$
 Hence, $\sum_{i=1}^n D_i \leq n$.

Graham's Scan: Rotational Variant

Algorithm:

Find a point, p_0 , which **must** be on the convex hull (e.g., the leftmost point).

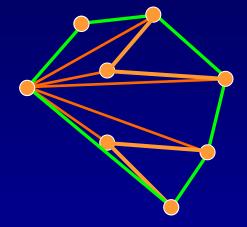
Sort the other points by the angle of the rays shot to them from p₀.

Question: Is it necessary to compute the actual angles? If not, how can we sort?

Construct the convex hull using one traversal of the points.

□ Time Complexity: O(*n* log *n*)

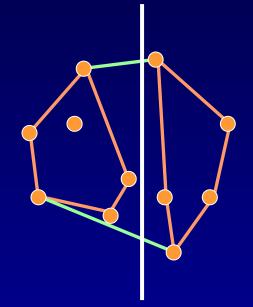
Question: What are the pros and cons of this algorithm relative to the previous one?



Convex Hull: Divide and Conquer

Algorithm:

- Find a point with a median x coordinate (time: O(n))
- Compute the convex hull of each half (recursive execution)
- Combine the two convex hulls by finding common tangents.
 Question: How can this be done in <u>O(n)</u> time?



Time Complexity:

O(*n* log *n*)

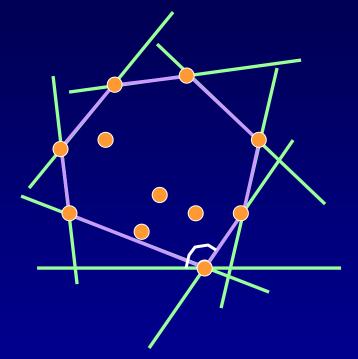
 $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$

Convex Hull: Gift Wrapping

Algorithm:

Find a point p₁ on the convex hull (e.g., the lowest point).

 Rotate counterclockwise a line through *p*₁ until it touches one of the other points (start from a horizontal orientation).
 Question: How is this done?



Repeat the last step for the new point.

Stop when p₁ is reached again.

Time Complexity: O(nh), where n is the input size and h is the output (hull) size.

□ Since $3 \le h \le n$, time is $\Omega(n)$ and $O(n^2)$.

General Position

When designing a geometric algorithm, we first make some simplifying assumptions (that depend on the problem and on the algorithm!), e.g.:

No 3 collinear points;

No two points with the same x coordinate.

Later, we consider the general case:

- How should the algorithm react to degenerate cases?
- Will the correctness be preserved?
- Will the running time remain the same?

Lower Bound for Convex Hull

- A reduction from Sorting to convex hull:
 - Given *n* real values x_i , generate *n* points on the graph of a convex function, e.g., a parabola, (x_i, x_i^2) .
 - Compute the polygon C, the convex hull of the points.
 - The order of the points on C is the same order as that of the x_i.
- $\square \text{ Hence, Complexity(CH)} = \Omega(n \log n)$
- Due to the existence of O(*n* log *n*)-time algorithms, Complexity(CH)= ⊕(*n* log *n*)

