
1

Computational Geometry
(CS 236719)

http://www.cs.technion.ac.il/~barequet/teaching/cg/fa21

Chapter 1

Introduction

Center for Graphics and Geometric Computing, Technion
2

Copyright 2002-2015

Prof. Gill Barequet

Center for Graphics and Geometric Computing

Dept. of Computer Science

The Technion

Haifa

Thanks to Michal Urbach-Aharon who prepared the

initial version of the presentations of this course

Center for Graphics and Geometric Computing, Technion
3

Staff (Fall 2021-22 ב"תשפ)

❑ Lecturer: Prof. Gill Barequet

E-mail: barequet@cs.technion.ac.il

❑ TA: Ms. Amani Shhadi

E-mail: amani.shhadi@cs.technion.ac.il

❑ Office hours: Any time (by appointment)

❑ Lecture: Monday 10:30-12:30

❑ Recitation: Monday 12:30-13:30

❑ Exams: Term A: Monday, January 31, 2022

Term B: Hopefully no need to!

mailto:gilbe@cs.technion.ac.il
mailto:gilbe@cs.technion.ac.il

Center for Graphics and Geometric Computing, Technion
4

Bibliography

❑ Computational Geometry: Algorithms and

Applications,

M. de Berg, M. van Kreveld, M. Overmars, and

O. Schwarzkopf,

3rd edition, Springer-Verlag, 2008.

❑ Course slides

Center for Graphics and Geometric Computing, Technion
5

Assessment

❑ Three dry homework assignments (~12.5%)

❑ One wet (running) exercise (~12.5%)

❑ No midterm exam

❑ Final exam (75%)

Center for Graphics and Geometric Computing, Technion
6

Syllabus

❑ Introduction

❑ Basic techniques

❑ Basic data structures

❑ Polygon triangulation

❑ Linear programming

❑ Range searching

❑ Point location

❑ Voronoi diagrams

❑ Duality and Arrangements

❑ Delaunay triangulations

❑ Applications and miscellaneous

Prerequisite course:

Data Structures

(Recommended but

not mandatory:

Algorithms)

Center for Graphics and Geometric Computing, Technion
7

Questions?

Center for Graphics and Geometric Computing, Technion
8

Lecture Topics

❑ Sample problems

❑ Basic concepts

❑ Convex-hull algorithms

Center for Graphics and Geometric Computing, Technion
9

Sample Problems

Convex Hull demo

Voronoi Diagram demo

Visibility demo

https://www.nayuki.io/page/convex-hull-algorithm
http://blog.ivank.net/voronoi-diagram-in-javascript.html
https://dkegle.github.io/visibility-polygon/

Center for Graphics and Geometric Computing, Technion
10

Nearest Neighbor

❑ Problem definition:

Input: A set of points (sites) P in the plane

and a query point q.

Output: The point pP closest to q among

all points in P.

❑ Rules of the game:

One point set, multiple queries

❑ Application: Cellphones

Store Locator

P

qp

Center for Graphics and Geometric Computing, Technion
11

The Voronoi Diagram

❑ Problem definition:

Input: A set of points (sites) S in the plane.

Output: A planar subdivision S into cells, one

per site. The cell corresponding to pP

contains all the points to which p is the closest.

S

P

Center for Graphics and Geometric Computing, Technion
12

Point Location

❑ Problem definition:

Input: A partition S of the plane

into cells and a query point p.

Output: The cell C  S containing p.

❑ Rules of the game:

One partition, multiple queries

❑ Applications: Nearest neighbor

State locator

S

p

C

Center for Graphics and Geometric Computing, Technion
13

Point in Polygon

P

❑ Problem definition:

Input: A polygon P in the plane and a query

point p.

Output: true if pP, else false.

❑ Rules of the game:

One polygon, multiple queries

p

Center for Graphics and Geometric Computing, Technion
14

Shortest Path

❑ Problem definition:

Input: Obstacles locations

and query endpoints s and t.

Output: The shortest path

between s and t that avoids

all obstacles.

❑ Rules of the game:

One obstacle set, multiple

queries (s,t).

❑ Application: Robotics.

s

t

Center for Graphics and Geometric Computing, Technion
15

P

Range Searching and Counting

❑ Problem definition:

Input: A set of points P in the

plane and a query rectangle R.

Output:

(report) The subset Q  P contained in R; or

(count) The cardinality of Q. R

Q

❑ Rules of the game:

One point set, multiple queries.

❑ Application: Urban planning

5

Center for Graphics and Geometric Computing, Technion
16

Visibility

P

❑ Problem definition:

Input: A polygon P in the plane and a query

point p.

Output: The polygon Q  P containing all

points in P visible to p.

❑ Rules of the game:

One polygon, multiple queries

❑ Applications: Security

p

Q

Center for Graphics and Geometric Computing, Technion
17

Questions?

Center for Graphics and Geometric Computing, Technion
18

Basic Concepts

Center for Graphics and Geometric Computing, Technion
19

Representing Geometric Elements

❑ Representation of a line segment by four

real numbers:

Two endpoints (p1 and p2)

One endpoint (p1), vector direction (v) and

parameter interval length (d)

(Question: where did the extra parameter

come from?)

One endpoint (p1), a slope (), and length (d)

Other options…

Unique representation?

❑ Different representations may affect the running

times of algorithms!

p1

p2

d



v

Center for Graphics and Geometric Computing, Technion
20

Orientation

❑ The sign of the area indicates the orientation of the points.

❑ Positive area  counterclockwise orientation  left turn.

❑ Negative area  clockwise orientation  right turn.

❑ Question: How can this be used to determine whether a

given point is “above” or “below” a given line?

(Hint: … or a line segment?)

(Degenerate instances?)

1 1

2 2

3 3

1
1

1
2

1

Area

x y

x y

x y

=

(x1,y1)

(x3,y3)

(x2,y2)

+

Center for Graphics and Geometric Computing, Technion
21

Complexity (reminder)

“Nickname”DefinitionSymbol

“”N,C n>N f(n)/g(n)  Cf(n) = O(g(n))

“<”lim f(n)/g(n) = 0f(n) = o(g(n))

“=”f(n) = O(g(n)) and

g(n) = O(f(n))

f(n) = (g(n))

“”g(n) = O(f(n))f(n) = (g(n))

“>”g(n) = o(f(n))f(n) = (g(n))

n→

Center for Graphics and Geometric Computing, Technion
22

Convex Hull Algorithms

Center for Graphics and Geometric Computing, Technion
23

CH(S)

Convexity and Convex Hull

❑ Definition: A set S is convex if for any pair of

points p,q  S, the entire line segment pq  S.

❑ The convex hull of a set S (קְמוֹר) is the minimal

convex set that contains S.

❑ Another (equivalent) definition: The intersection

of all convex sets that contain S.

❑ Question: Why should the boundary of the

convex hull of a point set be a polygon whose

vertices are a subset of the points?

S

p

q

non-convex

q

p

convex

Center for Graphics and Geometric Computing, Technion
24

Convex Hull: Naive Algorithm

❑ Description:

For each pair of points construct its
connecting segment and supporting line.

Find all the segments whose supporting lines
divide the plane into two halves, such that
one half plane contains all the other points.

Construct the convex hull out of these
segments.

❑ Time complexity (for n points):

Number of point pairs:

Check all points for each pair: (n)

Total: (n3)

❑ Space complexity: (n)

No

Yes

)(
2

2n
n

=








Center for Graphics and Geometric Computing, Technion
25

Possible Pitfalls

❑ Degenerate cases, e.g., 3 collinear points,

may harm the correctness of the algorithm.

All, or none, of the segments AB, BC and AC

will be included in the convex hull.

Question: How can we solve the problem?

❑ Numerical problems: We might conclude that none of

the three segments (or a wrong pair of them) belongs to

the convex hull.

A

B

C

❑ Question: How is collinearity detected?

Center for Graphics and Geometric Computing, Technion
26

Convex Hull: Graham’s Scan
❑ Algorithm:

Sort the points according to their x coordinates.

Construct the upper boundary by scanning the points
in the sorted order and performing only “right turns”
(trim off “left turns”).

Construct the lower boundary in the same manner.

Concatenate the two boundaries.

❑ Time Complexity: O(n log n) (only!)

❑ May be implemented using a stack

❑ Question: How do we check for a “right turn”?

Center for Graphics and Geometric Computing, Technion
27

The Algorithm

❑ Input: Point set {pi}.

❑ Sort the points in increasing order of x coordinates:

p1, ..., pn.

❑ Push(S,p1); Push(S,p2);

❑ For i = 3 to n do

While Size(S)  2 and Orient(pi,top(S),second(S))  0 do

Pop(S);

Push(S,pi);

❑ Output S.

Center for Graphics and Geometric Computing, Technion
28

Graham’s Scan: Time Complexity

❑ Sorting: O(n log n)

❑ If Di is the number of points popped on processing pi,

❑ Naively, the last term can be quadratic in n; But…

❑ Each point is pushed on the stack only once.

❑ Once a point is popped, it cannot be popped again.

❑ Hence, .

1 1

time (1)
n n

i i

i i

D n D
= =

= + = + 

1

n

i

i

D n
=



Center for Graphics and Geometric Computing, Technion
29

Graham’s Scan: Rotational Variant

❑ Algorithm:
Find a point, p0, which must be on the
convex hull (e.g., the leftmost point).

Sort the other points by the angle of the
rays shot to them from p0.

Question: Is it necessary to compute the
actual angles? If not, how can we sort?

Construct the convex hull using one
traversal of the points.

❑ Time Complexity: O(n log n)

❑ Question: What are the pros and
cons of this algorithm relative to the
previous one?

Center for Graphics and Geometric Computing, Technion
30

Convex Hull: Divide and Conquer

❑ Algorithm:
Find a point with a median x
coordinate (time: O(n))

Compute the convex hull of each half
(recursive execution)

Combine the two convex hulls by
finding common tangents.

Question: How can this be done in
O(n) time?

)(
2

2)(nO
n

TnT +







=

❑ Time Complexity:

O(n log n)

Center for Graphics and Geometric Computing, Technion
31

Convex Hull: Gift Wrapping

❑ Algorithm:

Find a point p1 on the convex hull (e.g.,

the lowest point).

Rotate counterclockwise a line through

p1 until it touches one of the other points

(start from a horizontal orientation).

Question: How is this done?

Repeat the last step for the new point.

Stop when p1 is reached again.

❑ Time Complexity: O(nh), where n is the input size and h is

the output (hull) size.

❑ Since 3≤h≤n, time is (n) and O(n2).

Center for Graphics and Geometric Computing, Technion
32

General Position

❑When designing a geometric algorithm, we first make

some simplifying assumptions (that depend on the

problem and on the algorithm!), e.g.:

No 3 collinear points;

No two points with the same x coordinate.

❑ Later, we consider the general case:

How should the algorithm react to degenerate cases?

Will the correctness be preserved?

Will the running time remain the same?

Center for Graphics and Geometric Computing, Technion
33

Lower Bound for Convex Hull

❑ A reduction from Sorting to convex

hull:

Given n real values xi, generate

n points on the graph of a convex

function, e.g., a parabola, (xi,xi
2).

Compute the polygon C, the

convex hull of the points.

The order of the points on C is

the same order as that of the xi.

❑ Hence, Complexity(CH)=(n log n)

❑ Due to the existence of

O(n log n)-time algorithms,

Complexity(CH)= (n log n)

