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Computational Geometry

Chapter 2

Basic Techniques
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On the Agenda

❑ Line Segment Intersection

❑ Plane Sweep

❑ Euler’s Formula
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Triangle Area
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❑ The determinant is twice the area of the triangle whose 

vertices are the rows of the matrix.
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Triangle Orientation

❑ The sign of the result indicates the orientation of the 

vertices.

❑ Positive triangle  counter-clockwise direction  left turn.

❑ Negative triangle  clockwise direction  right turn.
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Line-Segment Intersection

❑ Theorem: Segments (p1,p2) and (p3,p4) 
intersect in their interiors if and only if

p1 and p2 are on different sides of the line p3p4;

and

p3 and p4 are on different sides of the line p1p2.

❑ This can be checked by computing the 
orientations of  four triangles.  Which?

❑ Special cases:

p4

p2

p3

p1
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Computing the Intersection
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Question:  What is the meaning of other 

values of s and t?

Solve (2D) linear vector equation for t and s:

( ) ( )

[0,1] [0,1]

p t q s

t s

=

 check that and



Center for Graphics and Geometric Computing, Technion
7

Point in Polygon

❑ Given a polygon P with n sides, and 

a point q, decide whether qP.

❑ Solution A:  Count how many times a ray 

from q to infinity intersects the polygon.

qP if and only if this number is odd. 

❑ Time complexity:  (n)

❑ Question: Are there any special cases?

P

q
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Point in Polygon (cont.)

P

q

❑ Solution B:  Sum up the angles 

i=piqpi+1 for i=0,..,n-1 (n0 mod n)

❑ Sum = 2 iff qP (otherwise Sum = 0)

❑ Note:  Some angles are negative.
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❑ Time complexity:  Θ(n)

❑ Question: Can the problem be solved in less 

time if P is convex?
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Plane-Sweep Paradigm

❑ Problem:  Given n line-segments in 
the plane, compute all their 
intersection points.

❑ Variant:  Report # of intersections.

❑ Another variant:  Is there any pair 
of intersecting segments?

❑ Assumptions:
No line segment is vertical.

No two segments overlap in more than 
one point.

No three segments intersect at a 
common point.

❑ Naive algorithm:  Check each pair of segments for 

intersection.  Complexity:  (n2) time, (n) space.  
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Segment-Intersection Algorithm

❑ An event is any endpoint or 
intersection point.

❑ Sweep the plane from left to right 
using a vertical line.

❑Maintain two data structures:
Event priority queue:  sorted by x
coordinate.

Sweep-line status:  stores segments 
currently intersected by the sweep line, 
sorted by y coordinate.
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Basic Idea

Theorem: Just before an intersection 

occurs (infinitesimally-close to it), the two 

respective segments are adjacent to each 

other in the sweep-line status.

In practice: Look ahead: whenever two 

line segments become adjacent along the 

sweep line, check for their intersection to 

the right of the sweep line.

We are able to identify all intersections by 

looking only at adjacent segments in the 

sweep line status during the sweep.
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Detailed Algorithm

❑ Initialization: 

Put all segment endpoints in the event queue, sorted 

according to x coordinates.  Time:  O(n log n).

Sweep line status is empty.

❑ The algorithm 

proceeds by 

inserting, deleting, 

and handling 

discrete events 

from the queue 

until it is empty.
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Detailed Algorithm  (cont.)

❑ Event of type A:  Beginning of a 

segment (left endpoint)

Locate segment position in the status.

Insert segment into sweep line status.

Test for intersection to the right of the 

sweep line with the segments 

immediately above and below (if exist).  

Insert intersection point(s) (if found) 

into the event queue.

❑ Time complexity:

n events, O(log n) time for each

→ O(n log n) in total.
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Detailed Algorithm  (cont.)

❑ Event of type B:  End of a segment 

(right endpoint)

Locate segment position in the status.

Delete segment from sweep line status.

Test for intersection to the right of the 

sweep line between the segments 

immediately above and below (if exist).  

Insert intersection point (if found, and if 

not already in the queue) into the event 

queue.

❑ Time complexity:

n events, O(log n) time for each 

→ O(n log n) in total.
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Detailed Algorithm  (cont.)

❑ Event of type C:  Intersection point
Report/count the point.

Swap the two respective line     
segments in the sweep-line status.

For the new upper segment:  Test it for 
intersection against the segment above 
it in the status (if exists).  Insert 
intersection point (if found, and if not 
already in the queue) into the event 
queue.

Perform a similar action for the new 
lower segment (check against the 
segment below it, if exists).

❑ Time complexity: 

k such events, O(log n) each
→ O(k log n) in total.

k is the
output size
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Example

s4

s2

s1

s0

s3

s0,s1,s2,s3

a4, b1, b2, b0, b3, b4

e1

Sweep Line 

Status

Event 

Queue

a1

b1

a0

b0

a2

b2

a4

a3

b3

b4
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Example  (cont.)

s4

s2

s1

s0

s3

Insert s4 to status

Test s4-s3 and s4-s2. Add e1 to event queue

s0,s1,s2, s4, s3

b1, e1, b2, b0, b3, b4

e1

Action 

Sweep Line 

Status

Event 

Queue

a1

b1

a0

b0

a2

b2

a4

a3

b3

b4
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Example  (cont.)

s4

s2

s1

s0

s3

Delete s1 from status

Test s0-s2. Add e2 to event queue

s0,s2,s4,s3

e1, e2, b2, b0, b3, b4

e2

Action 

Sweep Line 

Status

Event Queue

a1

b1

a0

b0

a2

b2

a4

a3

b3

b4

e1
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Example  (cont.)

s4

s2

s1

s0

s3

Swap s3 and s4 .

Test s3-s2.

s0,s2,s3,s4

e2, b2, b0, b3, b4

Action 

Sweep Line 

Status

Event Queue

a1

b1

a0

b0

a2

b2

a4

a3

b3

b4

e1

e2
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Complexity Analysis
❑ Basic data structures:

Event queue:  heap

Sweep line status:  balanced binary tree

❑ Each heap/tree operation requires O(log n) time.

(Why is O(log k) = O(log n) ?)

❑ Total time complexity:  O((n+k) log n).
If kn2 this is slightly worse than the naive algorithm!
But if  k=o(n2/log n)  then the sweep algorithm is faster.

Note:  There exists a better algorithm whose running    
time is (n log n + k) [Balaban, 1995].

❑ Total space complexity:  O(n+k).

Question:  How can this be improved to O(n)?

(Hint: Which events are [temporarily] redundant               
in the queue?)
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Graph Definitions

A

B C

D

E

I

F

L

K

J

H

G

G = <V,E>

V = vertices = 

{A,B,C,D,E,F,G,H,I,J,K,L}

E = edges = 

{(A,B),(B,C),(C,D),(D,E),(E,F),(F,G),

(G,H),(H,A),(A,J),(A,G),(B,J),(K,F),

(C,L),(C,I),(D,I),(D,F),(F,I),(G,K),

(J,L),(J,K),(K,L),(L,I)}

Vertex degree (valence) = number of edges incident on vertex.

deg(J) = 4, deg(H) = 2

k-regular graph = graph whose vertices all have degree k

A face of a planar graph is an empty cycle of vertices/edges.

F = faces = 

{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,J),(C,D,I),

(D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G),(A,B,C,D,E,F,G,H)}
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Connectivity

A graph is connected if there is a path of edges 

connecting every two vertices.

A graph is k-connected if between every two 

vertices  there are k edge-disjoint paths.

A graph G’=<V’,E’> is a subgraph of a graph 

G=<V,E> if V’ is a subset of V and E’ is the subset 

of E incident on V’. 

A connected component of a graph is a maximal 

connected subgraph.

A subset V’ of V is an independent set in 

G if the subgraph it induces does not contain 

any edges of E.
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Graph Embedding

A graph is embedded in Rd if each vertex is 

assigned a position in Rd.

Embedding in R2 Embedding in R3
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Planar Graphs

Planar Graph Plane Graph

Straight-Line Plane Graph

A planar graph is a graph 

whose vertices and edges can
be embedded in R2 such that 

its edges do not intersect.

Theorem [Tutte, 1963]:  Every

planar graph can be drawn as a

straight-line plane graph.
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Triangulation

A triangulation of a point set is a straight-line

plane graph whose (finite) faces are all

triangles.  (Triangulation of the CH of the set.)

Theorem:  The number of triangulations of a

set of n points in the plane is exponential with

n.

The Delaunay triangulation of a set of

points is the unique set of triangles such

that the circumcircle of any triangle does

not contain any other point. 

The Delaunay triangulation avoids long 

and skinny triangles.
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Meshes

Boundary edge: adjacent to exactly one face.

Regular edge: adjacent to exactly two faces.

Singular edge: adjacent to more than two faces. 

Closed mesh: mesh with no boundary edges.

Manifold mesh: mesh with no singular edges. Corners  V x F

Half-edges  E x F

A mesh is a straight-line graph embedded in R3.

Closed ManifoldManifold with BoundaryNon-Manifold
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Planar Graphs and Meshes

Every manifold mesh is planar !!

Flatten !!Head
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Topology

Euler-Poincaré Formula

For a planar graph:

v+f-e = 2(c-g)-b

v = # vertices c = # conn. comp.

f = # faces g = genus

e = # edges b = # boundaries

v =12

f = 14

e = 25

c = 1

g = 0

b = 1 

The genus of a graph is half of

the maximal number of closed paths

that do not disconnect the graph

(the number of “holes”).

Genus(sphere) = 0

Genus(torus) = 1



Center for Graphics and Geometric Computing, Technion
29

Examples

Genus 0 Genus 1

Genus 2
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Exercises

Theorem: In a closed manifold 

triangle mesh, the average vertex

degree is ~6.

Proof: In such a mesh, f = 2e/3. 

By Euler’s formula: v+2e/3-e = 2-2g

hence e = 3(v-2+2g) and f = 2(v-2+2g).

So Average(deg) = 2e/v = 6(v-2+2g)/v 

~ 6 for large v. 

Corollary:  Only a toroidal (g=1) 

closed manifold triangle mesh can be 

regular (all vertex degrees are 6).

Proof: In a regular mesh the average 

degree is exactly 6. This can happen

only if g=1.

Does Euler’s theorem imply that any

planar graph has an independent set 

of size at least ¼ n ?
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Euler’s Formula

❑ For a connected planar 

graph with E edges, V

vertices, and F faces, the 

following relation holds:

V-E+F = 2

V = 9

E = 9

F = 2



Center for Graphics and Geometric Computing, Technion
32

The Linearity Relation
❑ Theorem: In a planar graph, E = O(V) and F = O(V).

❑ Proof: 

We may assume that the graph is maximally triangulated (this may only 

increase E and F). 

Every face is bounded by 3 half-edges   3F = 2E  E=3F/2

By Euler’s formula: V-E+F = 2   V-3F/2+F = 2   F = 2(V-2) = O(V)

Similarly, F = 2E/3   V-E+2E/3=2   E = 3(V-2) = O(V)

V=10

E=24

F=16


