Computational Geometry

Chapter 4

Linear Programming

On the Agenda

- Linear programming
- Smallest enclosing disk

Linear Programming: Definition

Define:

- \mathbf{x}_i the amount of food of type i variables (1 $\leq i \leq d$).
- **■** j types of vitamins $(1 \le j \le n)$.
- a_{ii} the amount of vitamin j in one unit of food i.
- c_i the number of calories in one unit of food *i*.
- Constraints (we need to consume some minimal amount of every vitamin):

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \ge b_1$$

:

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \ge b_n$$

Minimize: the total number of calories consumed:

$$C(x) = c_1 x_1 + c_2 x_2 + \dots + c_d x_d$$

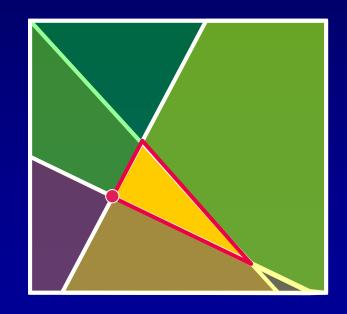


Minimize: $c^T x$

Subject to : $Ax \ge b$

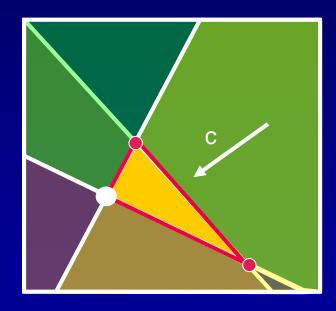
Linear Programming: Geometry

- Each constraint defines a half-space in the *d*-dimensional space.
- ☐ The *feasible region* is the (convex) intersection of these half-spaces.
- Question: Why is the feasible region convex?
- We will discuss the planar case (d = 2), in which each constraint defines a *half-plane*.



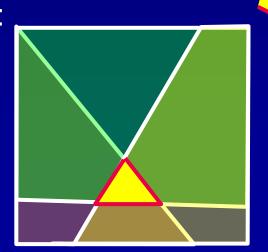
More Geometry

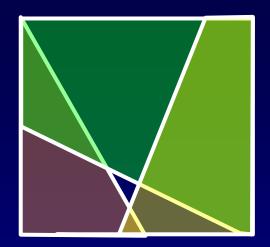
- The solution to the linear program is the (or a) point in the feasible region that is extreme in the direction of the *target* function.
- Observation: Any bounded linear program that is feasible either has
 - A unique solution, which is a vertex of the feasible region; or
 - Infinitely-many solutions that are a face of the feasible region which is perpendicular to the target function.
- Proof: By convexity.

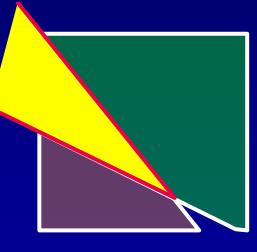


Degenerate Cases

- ☐ The feasible region may be:
 - Empty
 - Unbounded
 - A line/ray/line-segment
 - A point
- The solution may be:
 - Not unique

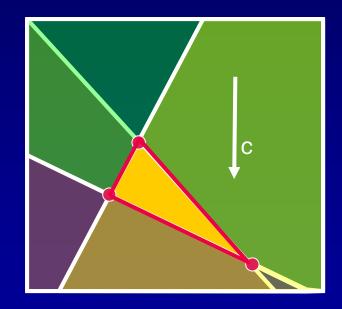






The Simplex Algorithm

- Assume, without loss of generality, that the target function points "downwards".
- Construct (some of) the vertices of the feasible region.
- Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).
- In R^d, the number of vertices might be $\Theta(n^{\lfloor d/2 \rfloor})$, and the algorithm may traverse $\Theta(n^{\lfloor d/2 \rfloor})$ of them.



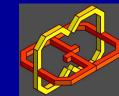
History of Linear Programming

- Mid 20th century: Simplex algorithm, time complexity $\Theta(n^{\lfloor d/2 \rfloor})$ in the **worst case**. Practically, this algorithm is commonly used due to its efficient **expected** running time (linear in n).
- Early 1980's: Khachiyan's ellipsoid algorithm with time complexity poly(n,d).
- Early 1980's: Karmakar's interior-point algorithm with time complexity poly(n,d).
- 1984: Nimrod Megiddo's parametric-search algorithm:
 - Time complexity $O(C_d n)$ (linear in n), where C_d is a constant dependent only on d.
 - His initial constant was as high as 2²d.
 - Later the constant was improved to 3^{d^2}.
 - There were further improvements of C_{d} .
 - This is optimal when *d* is constant.



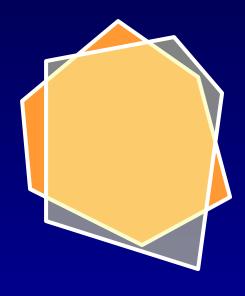
O(n log n)-Time D&C 2D-LP Algorithm

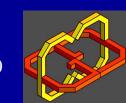
- Input:
 - n half-planes.
 - A target function that (w.l.o.g.) points down.
- Algorithm:
 - 1. Construct the feasible region of the whole problem:
 - a. Partition the n half-planes into two sets of size n/2.
 - b. Compute recursively the feasible region for each group.
 - Compute the intersection of the two feasible regions.
 - Check the target function on the vertices of the feasible region.



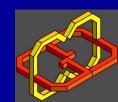
D&C: Time-Complexity Analysis

- □ The complexity of the intersection of two convex *n*-gons is O(*n*). Why?
- ☐ Stage 1.c:
 - Intersection of two convex polygons (of ≤n vertices): solved by a plane-sweep algorithm.
 - No more than *four* segments are simultaneously in the SLS, and there are O(n) events (vertices and intersections) in the EQ. Total time: O(n); Worst case: Θ(n) time.
- ☐ Stage 2:
 - Time of finding the vertex minimizing the target function: O(log n).
- The total time is the solution of the recursive equation T(n) = 2T(n/2) + O(n), which is $T(n) = O(n \log n)$.





- Start by intersecting two halfplanes.
- □ Add halfplanes one by one, and update the optimum vertex by solving a 1-D linear-programming problem on the new line.
- We will handle first the addition of a halfplane when the feasible region is already bounded; then we will handle the unbounded case.

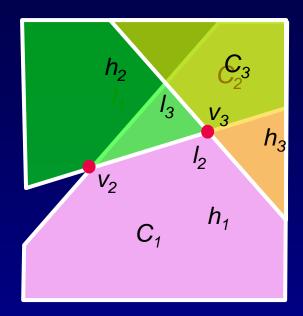


Incremental Algorithm: Notation

Definitions:

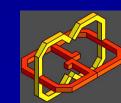
 h_i : the i^{th} halfplane

 I_i : the line that defines h_i



 C_i : the feasible region after *i* constraints

 V_i : the optimum vertex of C_i



Incremental Algorithm: Basic Theorem

Theorem:

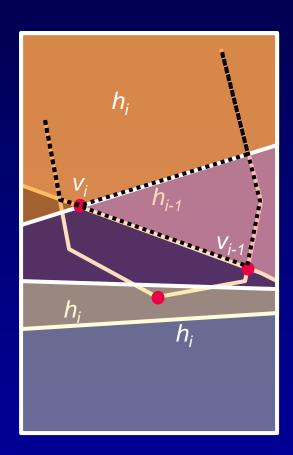
- 1. If $v_{i-1} \in h_i$, then $v_i = v_{i-1}$.
- 2. If $v_{i-1} \notin h_i$, then either

or

b. $C_i = C_{i-1} \cap h_i$ and v_i lies on l_i .

Proof:

- 1. Trivial. Otherwise v_i would not have been optimum before.
- 2a. Also trivial.



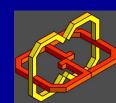
Basic Theorem (cont.)

2b. Assume on the contrary that v_i is not on l_i . v_i must be in C_{i-1} . By convexity, the entire line segment $v_i v_{i-1}$ is in C_{i-1} .

Consider v_j , the intersection point of the segment $v_i v_{i-1}$ with l_i . By definition, v_j is in C_i , and by linearity it is better than v_i .

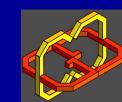
h_i V_j h_{i-1} V_{j-1}

This is a **contradiction**.



Incremental Step: Given $v_{i-1} \& h_i$, Find v_i

- If $v_{i-1} \in h_i$ (can be checked in O(1) time), then don't do anything $(v_i = v_{i-1})$.
- Intersect all h_j (j < i) with l_i , generating i-1 rays representing feasible half-unbounded intervals (in the direction of the target function).
- ☐ If I_j and I_i are parallel, then the entire line is either good (so ignore it), or bad (so report "no solution").
- \square Intersect the *i*-1 rays in $\Theta(i)$ time. How?
- ☐ If the intersection is empty, then report "no solution", else report the lowest point. How?



Complexity Analysis

☐ Time:

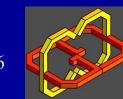
$$T(n) = \sum_{i=3}^{n} O(i) = O(n^2)$$

(Summation starts from 3 since two halfplanes that certify that the problem is bounded are found in the initialization step.)



 $\Theta(n^2)$ in the worst case.

□ Space: $\Theta(n)$.



Unbounded LP

- Input: The entire LP program.
- Output: An indication that the feasible region is either
 - A. Unbounded (+ a ray completely contained in it); or
 - B. Bounded (+ two of the halfplanes that make it so).
- □ Algorithm: See in [BKOS, §4].
- \square Time: $\Theta(n)$.
- □ Space: $\Theta(n)$.
- The time & space of the entire algorithm remain the same.
- Comments:
 - The procedure may detect that the problem is infeasible.
 - When we are not interested in infinite solutions, we can arbitrarily define a target function, based on the first two halfplanes, that makes the problem bounded.

An $\Theta(n)$ -Time Randomized Version

Is there a **good** order that will make the algorithm run in $\Theta(n)$ time? Yes, there is, but unfortunately finding this order requires $O(n^2)$ time.

- ☐ The randomized version is exactly like the deterministic one, except that the **order** of the lines is **random**.
- **Theorem:** The **expected** running time of the random incremental algorithm (over all n! permutations of the halfplanes) is $\Theta(n)$.

Complexity Analysis

☐ There are *n* iterations.

If $v_i = v_{i-1}$ (no optimum change): O(1) time;

Otherwise: O(i) time.

Define random variables

$$x_{i} = \begin{cases} 1 & v_{i} \neq v_{i-1} \\ 0 & v_{i} = v_{i-1} \end{cases}$$

☐ The expected running time is:

$$\sum_{i=3}^{n} \left[O(1)(1 - E(x_i)) + O(i)E(x_i) \right] \le O(n) + \sum_{i=3}^{n} \left[O(i)E(x_i) \right]$$



Complexity Analysis (cont.)

Backward analysis:

 \square Q: What is $E[x_i]$?

A: Exactly $Pr[v_{i-1} \notin h_i]$.

- Question: So, when given the optimum after i halfplanes, what is the probability that the last halfplane affected the optimum?
- □ Answer: 2/i, because a change can occur only if the last processed halfplane is one of the two halfplanes that define v_i.
- More precisely:
 - At most 2/i, to take into account three lines passing through v_i .
 - It is actually 2/(i-2), since the first two halfplanes are fixed.

Complexity Analysis (cont.)

$$E(x_i) = \Pr(v_i \neq v_{i-1}) \approx \frac{2}{i}$$

$$O(n) + \sum_{i=3}^{n} O(i)E(x_i) = O(n) + O\left(\sum_{i=3}^{n} i \cdot \frac{2}{i}\right) = O(n)$$

Expected $\Theta(n)$ Time.

Just to Make Sure...

False Claim:

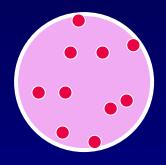
The probabilistic analysis is for the average **set of halfplanes**. Hence, there exist bad sets of constraints for which the algorithm's expected running time is $\omega(n)$ (*more* than $\Theta(n)$), and there exist good sets of constraints for which the algorithm's expected running time is o(n) (*less* than $\Theta(n)$).

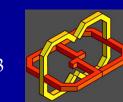
True Claim:

The probabilistic analysis is valid for *all* sets of halfplanes. The expected time complexity is over all *permutations* of any set of halfplanes. In this respect all sets are "good".

Smallest Enclosing Disk

- Input: n points.
- Output: The disk of minimum radius that encloses all the points.
- **Theorem:** Let *P* be a finite set of points, and let *D* be its smallest enclosing disk.
 - 1. The length of an arc of D defined by consecutive points is at most π .
 - 2. If *D* is defined by two points of *P*, then these two points are diametrical on *D*.
- This immediately implies an $O(n^4)$ -time algorithm. (How ?)





Underlying Theorem

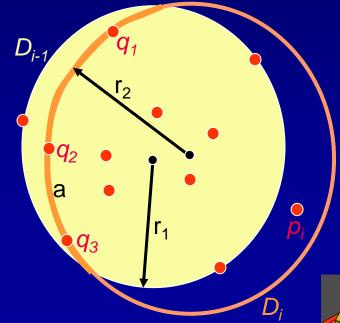
Idea: Use an incremental algorithm, processing one point at a time.

Notation: D_i is the smallest enclosing disk of the first i points.

Theorem: If $p_i \notin D_{i-1}$ then p_i is on the *boundary* of D_i .

Proof:

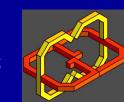
By a continuous deformation between D_{i-1} and D_i .



Expected $\Theta(n)$ -Time Incremental Algorithm

Procedures:

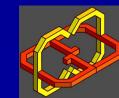
- MinDisk(P): Find the smallest enclosing disk of a set of points P.
- MinDisk1(P,q): Find the smallest enclosing disk of a set of points P, given that some point q is on its boundary.
- MinDisk2(P, q_1 , q_2): Find the smallest enclosing disk of a set of points P, given that some points q_1 and q_2 are on its boundary.
- □ Disk (q_1,q_2,q_3) : Find the disk defined by three non-collinear points q_1 , q_2 , and q_3 . (Obvious.)



Incremental Algorithm (cont.)

MinDisk(P):

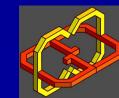
- \square D_2 = the minimum disk defined by p_1 and p_2 . (That is, the disk whose diameter is p_1p_2 .)
- □ For each point p_i (3≤i≤n):
 - If $p_i \in D_{i-1}$ then $D_i = D_{i-1}$;
 - Else D_i = MinDisk1(P_{i-1} , p_i).
- \square Return D_n .



Incremental Algorithm (cont.)

MinDisk1(P,q):

- \square D_1 = the minimum disk defined by q and p_1 . (That is, the disk whose diameter is qp_1 .)
- □ For each point p_i (2≤i≤|P|):
 - If $p_i \in D_{i-1}$ then $D_i = D_{i-1}$;
 - Else D_i = MinDisk2(P_{i-1}, q, p_i).
- \square Return D_n .



Incremental Algorithm (cont.)

MinDisk2(P,q₁,q₂):

- \square D_0 = the minimum disk defined by q_1 and q_2 . (That is, the disk whose diameter is q_1q_2 .)
- □ For each point p_i (1≤i≤|P|):
 - If $p_i \in D_{i-1}$ then $D_i = D_{i-1}$;
 - Else D_i = Disk (q_1, q_2, p_i) .
- \square Return D_n .

Time-Complexity Analysis

- Use backward analysis for a random point ordering.
- Total expected time complexity:
 - In the lowest level:
 - In the middle level: $\sum_{i=1 \atop |P|}^{i=1} (O(1) + O(i) \frac{2}{i}) = O(|P|)$ In the highest level: $\sum_{i=2 \atop n=1}^{n} (O(1) + O(i) \frac{3}{i}) = O(n)$
- Question: Why 2/i and 3/i?
- Linear expected running time.
- Worst case: $\Theta(n^3)$. (When?)

