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Computational Geometry

Chapter 5

Orthogonal Range Searching
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On the Agenda

❑ k-D Trees

❑ Range Trees
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Orthogonal Range Searching

❑ Problem: Given a set of n points in 

d, preprocess them such that 

reporting or counting the k points 

inside a d-dimensional axis-parallel 

box will be efficient. 

❑ Desired output-sensitive query time 

complexity – O(k+f(n)) for reporting 

and O(f(n)) for counting, where 

f(n)=o(n), e.g., f(n)=O(log n).

❑ Sample application: Report all cities 

within 20 KM radius of Tel Aviv.   

(Here the range is actually a circle.)

X
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Range Searching:  1D

❑ In a one-dimensional space, points are real numbers, 

and a range is defined by two numbers a and b.

❑ A simple O(log n)-time algorithm:

Sort points (O(n log n) time preprocessing).

(Binary) search for a and b in the list (O(log n) time).

List all values in between.

❑ Cannot be easily generalized to higher dimensions.  

(Why not ?).

a b
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Range Searching:  1D Tree

❑ Range tree solution:

Sort points.

Construct a balanced binary 

tree, storing the points in its 

leaves. 

Each tree node stores the 

largest value of its left 

subtree.
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Range Searching in a 1D Tree

❑ Finding a leaf:  O(log n) time.

❑ Find the two boundaries of the given 
range in the leaves u and v. 

❑ Report all the leaves in maximal
subtrees between u and v.

❑ Mark the vertex at which the search 
paths diverge as Vsplit.

❑ Continue to find the two boundaries, 
reporting values in the subtrees:

When going towards the left       
(right) endpoint of the range:             
If going left (right), report the      
entire right (left) subtree.

❑ When reaching a leaf, it needs to be 
checked.
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Running-Time Analysis

❑ k:  output size

❑ Leaves:  O(k) time

❑ Internal nodes:  O(k) time (since this is a binary tree)

❑ Paths:  O(log n) time

❑ Total:  O(log n + k) time

❑Worst case:  k = n →   (n) time

❑ Counting: O(log n) even in the worst case.  How?
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General Idea

❑ Build a data structure storing a “small” number of 

canonical subsets, such that:

The canonical sets may overlap.

Every query may be answered as the union of a “small” 

number of canonical sets.

❑ Needs the geometry of the space to enable this.

❑ Two extremes:

Singletons:  O(k) query time, even for counting.

Power set:  O(1) query time, O(2n) storage.
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Example (1D)

1

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

4 9 14 17 22 25 29

3 12 20 27

7 24

15

2 23

u v

{3}

{4,7}

{9,12,14,15}

{17,20}

{22}

V-split

canonical subset

The canonical subsets are subtrees (overkill in 1D).

What is the space consumption?



Center for Graphics and Geometric Computing, Technion
10

2D Trees

❑ Input:  A set of points in 2D.

❑ Enclose the points by an axis-parallel rectangle.

❑ Split the points into two equal-size subsets, 
using a horizontal or vertical line.

❑ Continue recursively to partition the subsets, 
alternating the directions of the lines, until  point 
subsets are small enough (of constant size).

❑ Canonical subsets are subtrees.

❑ In higher (k) dimensions:  Split directions 
alternate between the k axes.

❑ In k-D it is called “k-D tree”.

In 2-D:  Used to be called “2-D tree”;              
now (slang) called “2-D k-D tree”. 
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2D Tree:  Construction

❑ Partition the plane into axis-

aligned rectangular regions.

❑ Nodes represent rectangles 

(and partition lines), and 

leaves represent input points.

❑ The bottleneck is finding the 

median, but this requires only 

linear time!

❑ Time complexity:
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Two Possible Improvements

❑ Instead of finding the median from scratch each time:

Spend (twice) O(n log n) preprocessing time on sorting all 

points (once according to x, and once according to y).

Finding the median will be easier, but will still require linear 

time.

❑ Questions:

Why linear and not, say, logarithmic time?

Is it an asymptotic improvement?

❑ Attempting to overcome the last pitfall, copy the point 

subsets to the children trees (to avoid “jumps”).  

Thus, finding the median will require constant time.  

Unfortunately asymptotically there will be no 

improvement.  Why?
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Range Counting/Reporting

❑ Each node in the tree defines 

an axis-parallel rectangle in the 

plane, bounded by the lines 

marked by this vertex’s 

ancestors.

❑ Label each node with the 

number of points in that

rectangle. 
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Range Counting/Reporting (cont.)

❑ Given an axis-parallel 

range query R, search for 

this range in the tree. 

❑ Traverse only subtrees 

which represent regions 

overlapping R.

❑ If a subtree entirly 

contained in R:

Counting: Add up           

its count.

Reporting:               

Report entire         

subtree.
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Time-Complexity Analysis

❑ k nodes are reported.  How much time is spent on 
internal nodes?  The nodes visited are those that 
are stabbed by R but are not contained in R.  
How many such nodes exist?

❑ Theorem:  Every side of R stabs O(n) cells of 
the tree.

❑ Proof:  Extend the side (w.l.o.g.,                      
horizontal) to a full line.                                                   
In the first level it stabs two                                  
children, and in the next level it                                 
stabs two out of the four grandchildren.                                       
By the Master Theorem,                 𝑄 𝑛 = 𝑂( 𝑛).

❑ Total query time:  𝑂( 𝑛 + 𝑘).
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kd-Trees:  Higher Dimensions

❑ For a d-dimensional space:
Same algorithm

O(d) time is needed to handle a single point

Construction time:  O(d n log n)

Space Complexity:  O(d n)

Query time complexity:  O(d (n1-1/d+k))

❑ Note:  For large d, full scan is almost equally good!

❑ Question: Are kd-trees useful for non-orthogonal 
range queries, e.g., disks, convex polygons?

❑ Compare with the performance of d-D range trees (at 
the end of this presentation)
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Multi-Level Data Structure

❑ Construct a tree ordered 

by x coordinates.

❑ Each inner vertex v

contains a pointer to a 

secondary tree, that 

contains all the points of 

the primary subtree 

ordered by y coordinates.

❑ Points are stored only in 

the secondary trees.

Ordered by X

Ordered by Y
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Range Tree:  Construction

❑ Same as a 1D-Tree, except that in each level the 

secondary trees are built as well.

❑ Theorem:  The space complexity is (n log n).

❑ Proof:  The size of the primary tree is (n).  Each of 

its (log n) levels corresponds to a collection of 

secondary trees that contains all the n points.

❑ Construction time (naïve analysis):
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Range Tree:  Improved Construction

❑ However, there is no need for repeated sorting by y

coordinates!

❑ Instead, we can sort by y only once (in O(n log n) time), 

and copy data in the recursive calls in linear time.

❑ The resulting recursive equation is:

❑ Overall: O(n log n) time.
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Range Tree:  Search

❑ Given a 2D range, we 

simulate a 1D search and 

find subtrees sorted by x. 

❑ Instead of reporting the 

entire subtrees, we filter

them by invoking a search 

in the secondary trees 

sorted by y, and report only 

the points in the query 

range.

Ordered by X

Ordered by Y
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Search:  Analysis

❑ Time complexity:

❑ The running time can be reduced to O(log n + k) by 

using fractional cascading.
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Points in Non-General Position
❑ Question:  How can we handle sets of 

points which are not in general position, 
i.e., with multiple points with the same x
coordinate?

❑ Answer:  By two-step order checks.  
When comparing according to x,       
resolve ties by y, and vice versa.

❑ This splits points into two sides, having 
the same effect as infinitesimally rotating 
the plane.

❑ Theorem:  The modified order checks 
preserve the correctness of the 
algorithms.
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Range Trees:  Higher Dimensions

❑ Preprocessing: O(d n logd-1n) time

❑ Space:  O(d n logd-1n)

❑ Query:  O(d (logd-1n + k)) time


