
Center for Graphics and Geometric Computing, Technion
1

Computational Geometry

Chapter 5

Orthogonal Range Searching

Center for Graphics and Geometric Computing, Technion
2

On the Agenda

❑ k-D Trees

❑ Range Trees

Center for Graphics and Geometric Computing, Technion
3

Orthogonal Range Searching

❑ Problem: Given a set of n points in

d, preprocess them such that

reporting or counting the k points

inside a d-dimensional axis-parallel

box will be efficient.

❑ Desired output-sensitive query time

complexity – O(k+f(n)) for reporting

and O(f(n)) for counting, where

f(n)=o(n), e.g., f(n)=O(log n).

❑ Sample application: Report all cities

within 20 KM radius of Tel Aviv.

(Here the range is actually a circle.)

X

Y

Center for Graphics and Geometric Computing, Technion
4

Range Searching: 1D

❑ In a one-dimensional space, points are real numbers,

and a range is defined by two numbers a and b.

❑ A simple O(log n)-time algorithm:

Sort points (O(n log n) time preprocessing).

(Binary) search for a and b in the list (O(log n) time).

List all values in between.

❑ Cannot be easily generalized to higher dimensions.

(Why not ?).

a b

Center for Graphics and Geometric Computing, Technion
5

Range Searching: 1D Tree

❑ Range tree solution:

Sort points.

Construct a balanced binary

tree, storing the points in its

leaves.

Each tree node stores the

largest value of its left

subtree.

-4 -2 0 1 3 5 7 11

1

-2 5

7304-

0 1 3 5 7 11-2-4

Center for Graphics and Geometric Computing, Technion
6

5

Range Searching in a 1D Tree

❑ Finding a leaf: O(log n) time.

❑ Find the two boundaries of the given
range in the leaves u and v.

❑ Report all the leaves in maximal
subtrees between u and v.

❑ Mark the vertex at which the search
paths diverge as Vsplit.

❑ Continue to find the two boundaries,
reporting values in the subtrees:

When going towards the left
(right) endpoint of the range:
If going left (right), report the
entire right (left) subtree.

❑ When reaching a leaf, it needs to be
checked.

1

-2 5

730-4

0 1 3 5 7 11-2-4

Input Range: 3.5-8.2

1

117

Vsplit
5

3 7

Center for Graphics and Geometric Computing, Technion
7

Running-Time Analysis

❑ k: output size

❑ Leaves: O(k) time

❑ Internal nodes: O(k) time (since this is a binary tree)

❑ Paths: O(log n) time

❑ Total: O(log n + k) time

❑Worst case: k = n → (n) time

❑ Counting: O(log n) even in the worst case. How?

Center for Graphics and Geometric Computing, Technion
8

General Idea

❑ Build a data structure storing a “small” number of

canonical subsets, such that:

The canonical sets may overlap.

Every query may be answered as the union of a “small”

number of canonical sets.

❑ Needs the geometry of the space to enable this.

❑ Two extremes:

Singletons: O(k) query time, even for counting.

Power set: O(1) query time, O(2n) storage.

Center for Graphics and Geometric Computing, Technion
9

Example (1D)

1

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

4 9 14 17 22 25 29

3 12 20 27

7 24

15

2 23

u v

{3}

{4,7}

{9,12,14,15}

{17,20}

{22}

V-split

canonical subset

The canonical subsets are subtrees (overkill in 1D).

What is the space consumption?

Center for Graphics and Geometric Computing, Technion
10

2D Trees

❑ Input: A set of points in 2D.

❑ Enclose the points by an axis-parallel rectangle.

❑ Split the points into two equal-size subsets,
using a horizontal or vertical line.

❑ Continue recursively to partition the subsets,
alternating the directions of the lines, until point
subsets are small enough (of constant size).

❑ Canonical subsets are subtrees.

❑ In higher (k) dimensions: Split directions
alternate between the k axes.

❑ In k-D it is called “k-D tree”.

In 2-D: Used to be called “2-D tree”;
now (slang) called “2-D k-D tree”.

Center for Graphics and Geometric Computing, Technion
11

2D Tree: Construction

❑ Partition the plane into axis-

aligned rectangular regions.

❑ Nodes represent rectangles

(and partition lines), and

leaves represent input points.

❑ The bottleneck is finding the

median, but this requires only

linear time!

❑ Time complexity:

L1

L2 L3

L7L6L5L4

C D E F G HBA

L1

L3
L2

L4

L5

L6

L7

B
A

C

D

E
G

F
H

(1) 1

()
() 2 1

2

() (log)

O n

T n n
O n T n

T n O n n

=


=   
+  

 

=

Center for Graphics and Geometric Computing, Technion
12

Two Possible Improvements

❑ Instead of finding the median from scratch each time:

Spend (twice) O(n log n) preprocessing time on sorting all

points (once according to x, and once according to y).

Finding the median will be easier, but will still require linear

time.

❑ Questions:

Why linear and not, say, logarithmic time?

Is it an asymptotic improvement?

❑ Attempting to overcome the last pitfall, copy the point

subsets to the children trees (to avoid “jumps”).

Thus, finding the median will require constant time.

Unfortunately asymptotically there will be no

improvement. Why?

Center for Graphics and Geometric Computing, Technion
13

Range Counting/Reporting

❑ Each node in the tree defines

an axis-parallel rectangle in the

plane, bounded by the lines

marked by this vertex’s

ancestors.

❑ Label each node with the

number of points in that

rectangle.

L1

L2 L3

L7L6L5L4

C D E F G HBA

L5

L1

L3L2

L4
L6

L7

B
A

C

D

E

F

G
H

8

4 4

22 2 2

Center for Graphics and Geometric Computing, Technion
14

Range Counting/Reporting (cont.)

❑ Given an axis-parallel

range query R, search for

this range in the tree.

❑ Traverse only subtrees

which represent regions

overlapping R.

❑ If a subtree entirly

contained in R:

Counting: Add up

its count.

Reporting:

Report entire

subtree.

L1

L2 L3

L7L6L5L4

C D E F G

H

BA

L5

L1

L3
L2

L4
L6

L7

B
A

C

D

E

F

G HL1

L2

L4

A B

L5

C

R

I

L8

L8

I

9

4 5

2 2 2 3

2

Center for Graphics and Geometric Computing, Technion
15

Time-Complexity Analysis

❑ k nodes are reported. How much time is spent on
internal nodes? The nodes visited are those that
are stabbed by R but are not contained in R.
How many such nodes exist?

❑ Theorem: Every side of R stabs O(n) cells of
the tree.

❑ Proof: Extend the side (w.l.o.g.,
horizontal) to a full line.
In the first level it stabs two
children, and in the next level it
stabs two out of the four grandchildren.
By the Master Theorem, 𝑄 𝑛 = 𝑂(𝑛).

❑ Total query time: 𝑂(𝑛 + 𝑘).
















+

=

=
else

4
22

11

)(n
Q

n

nQ

Center for Graphics and Geometric Computing, Technion
16

kd-Trees: Higher Dimensions

❑ For a d-dimensional space:
Same algorithm

O(d) time is needed to handle a single point

Construction time: O(d n log n)

Space Complexity: O(d n)

Query time complexity: O(d (n1-1/d+k))

❑ Note: For large d, full scan is almost equally good!

❑ Question: Are kd-trees useful for non-orthogonal
range queries, e.g., disks, convex polygons?

❑ Compare with the performance of d-D range trees (at
the end of this presentation)

Center for Graphics and Geometric Computing, Technion
17

Multi-Level Data Structure

❑ Construct a tree ordered

by x coordinates.

❑ Each inner vertex v

contains a pointer to a

secondary tree, that

contains all the points of

the primary subtree

ordered by y coordinates.

❑ Points are stored only in

the secondary trees.

Ordered by X

Ordered by Y

Center for Graphics and Geometric Computing, Technion
18

Range Tree: Construction

❑ Same as a 1D-Tree, except that in each level the

secondary trees are built as well.

❑ Theorem: The space complexity is (n log n).

❑ Proof: The size of the primary tree is (n). Each of

its (log n) levels corresponds to a collection of

secondary trees that contains all the n points.

❑ Construction time (naïve analysis):

)log (O

else
2

2) log (O

1)1(O

)(

2 nn

n
Tnn

n

nT

=
















+

=

=

Center for Graphics and Geometric Computing, Technion
19

Range Tree: Improved Construction

❑ However, there is no need for repeated sorting by y

coordinates!

❑ Instead, we can sort by y only once (in O(n log n) time),

and copy data in the recursive calls in linear time.

❑ The resulting recursive equation is:

❑ Overall: O(n log n) time.

) log (O

else
2

2)(O

1)1(O

)(

nn

n
Tn

n

nT

=
















+

=

=

Center for Graphics and Geometric Computing, Technion
20

Range Tree: Search

❑ Given a 2D range, we

simulate a 1D search and

find subtrees sorted by x.

❑ Instead of reporting the

entire subtrees, we filter

them by invoking a search

in the secondary trees

sorted by y, and report only

the points in the query

range.

Ordered by X

Ordered by Y

Center for Graphics and Geometric Computing, Technion
21

Search: Analysis

❑ Time complexity:

❑ The running time can be reduced to O(log n + k) by

using fractional cascading.

)(log)(log)(log)(2 knOknnOnT
v

v +=++= 

   
traversing calls to traversing reporting
primary secondary secondary
structure structure structure

Center for Graphics and Geometric Computing, Technion
22

Points in Non-General Position
❑ Question: How can we handle sets of

points which are not in general position,
i.e., with multiple points with the same x
coordinate?

❑ Answer: By two-step order checks.
When comparing according to x,
resolve ties by y, and vice versa.

❑ This splits points into two sides, having
the same effect as infinitesimally rotating
the plane.

❑ Theorem: The modified order checks
preserve the correctness of the
algorithms.

Center for Graphics and Geometric Computing, Technion
23

Range Trees: Higher Dimensions

❑ Preprocessing: O(d n logd-1n) time

❑ Space: O(d n logd-1n)

❑ Query: O(d (logd-1n + k)) time

