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Computational Geometry

Chapter 6

Point Location
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Problem Definition
❑ Preprocess a planar map S.                   

Given a query point p, report                        
the face of S containing p.

❑ Goal: O(n)-size data structure                   
that enables O(log n) query time.

❑ Application:                                            
Which state is Baltimore located in?

Answer:  Maryland

❑ Trivial Solution: O(n) query time, where n is 
the complexity of the map.                
(Question:  Why is the query time only O(n)?)
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Naïve Solution

❑ Draw vertical lines through all 

the vertices of the subdivision.

❑ Store the x-coordinates of the 

vertices in an ordered binary 

tree.

❑Within each slab, sort the 

segments separately along y.

❑ Query time:  O(log n).

❑ Problem:  Too delicate 

subdivision, of size (n2) in 

the worst case.

(Give such an example!)
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The Trapezoidal Map

❑ Construct a bounding box.

❑ Assume general position:  unique x coordinates.

❑ Extend upward and downward the                         
vertical line from each vertex until                                   
it touches another segment.

❑ This works                                                                  
also for                                                                      
noncrossing                                                                  
line                                                                    
segments.
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Properties

❑ Contains triangles                                              
and trapezoids.

❑ Each trapezoid or triangle is determined:
By two vertices that define vertical sides; and

By two segments that define nonvertical sides.

❑More sensitive than the original subdivision.
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Notation

Every trapezoid (or triangle)  is defined by

❑ Left(): a segment endpoint (right or left);

❑ Right(): a segment endpoint (right or left);

❑ Top(): a segment;

❑ Bottom(): a segment.
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Complexity

❑ Theorem (linear complexity):

A trapezoidal map of n segments 

contains at most 6n+4 vertices 

and at most 3n+1 faces.

❑ Proof:

1. Vertices:

2n +   4n +   4    =    6n + 4      

  

2. Faces:   Count Left().

2n +   n +   1    =    3n + 1      

  

original  extensions  box

left e.p.  right e.p.  box

Question:

Why does the proof 
hold for degenerate 
situations?
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Map Data Structure
❑ Possibly by DCEL.

An alternative:

For each trapezoid store:

❑ The vertices that define its 
right and left sides;

❑ The top and bottom segments;

❑ The (up to two) neighboring 
trapezoids on right and left;

❑ (Optional)  The neighboring 
trapezoids from above and 
below.  This number might be 
linear in n, so only the leftmost 
of these trapezoids is stored.

Note:  Computing any 
trapezoid from the 
trapezoidal structure 
can be done in 
constant time.
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Search Structure:  Branching Rules

❑ Query point q, search-structure node s.

❑ s is a segment endpoint:

q is to the right of s:  go right;

q is to the left of s:  go left;

❑ s is a segment:

q is below s:  go right;

q is above s:  go left;
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Search Structure:  Construction

❑ Find a Bounding Box.

❑ Randomly permute the             

segments.

❑ Insert the segments one                        

by one into the map. 

❑ Update the map and search        

structure in each insertion. 

❑ The size of the map is (n).              

(This was proven earlier.)

❑ The size of the search                 

structure depends on the                  

order of insertion (will be analyzed later).
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Updating the Structures (High Level)

❑ Find in the existing structure the face 
that contains the left endpoint               
of the new segment.  (*)

❑ Find all other trapezoids            
intersected by this segment                  
by moving to the right.  (In                          
each move choose between               
two options: Up or Down.)

❑ Update the map Mi and the            
search structure Di.

(*) Note:  Since endpoints may 
be shared by segments, we 
need to consider its segment 
while searching.
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Update:  Simple Case

❑ The segment is contained 

entirely in one trapezoid.

❑ In Mi-1:  Split the trapezoid into 

four trapezoids.

❑ In Di-1:  The leaf will be replaced 

by a subtree.

❑ Everything is                         

done in O(1)                          

time.
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❑ General Case:  The ith

segment intersects with 

ki>1 trapezoids.

❑ Split trapezoids. 

❑Merge trapezoids that 

can be united.

❑ Total update time:  O(ki). 

Update M:  General Case
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Updating D:  Split

❑ Each inner

trapezoid in Di-1

is replaced by:

❑ Each outer

(e.g., left) 

trapezoid in Di-1

is replaced by:
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Updating D:  Merge
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❑ Leaves are eliminated and 

replaced by one common leaf.

❑ Total update time:  O(ki).

L
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Construction:  Worst-Case Analysis

❑ Each segment adds trees of depth at most (4-1=) 3, 

so the depth of Di is at most 3i.

❑ Query time (depth of Di):  O(i),  (i) in the worst case.

❑ The ith segment, si, intersects with O(i) trapezoids 

((i) in the worst case)!

❑ The size of D and its construction time are then 

bounded from above by
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Construction:  Worst-Case Analysis (cont.)

Worst-case example:
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Construction:  Worst-Case Analysis (cont.)

Worst-case example:

O(n)
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Construction:  Worst-Case Analysis (cont.)

Worst-case example:

The size of D and its

construction time is

in the worst case.
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Average-Case Analysis

❑We first consider the expected depth of D.

❑ q:  A point, to be searched in D.

❑ pi:  The probability that a new vertex of D was created 

in the path leading to q in the ith iteration.

Compute pi by backward analysis:

❑ q(Mi-1):  The trapezoid containing q in Mi-1.

❑ Since a new vertex of D was created in the ith 

iteration, q(Mi)  q(Mi-1).

❑ Delete si from Mi.

pi = Prob[q(Mi)  q(Mi-1)]  4/i.   (Why?)
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Expected Depth of D

❑ xi:  The number of vertices created in the ith

iteration in the path leading to the leaf q.

❑ The expected length of the path leading to q:
q
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Expected Size of D

❑ Define an indicator

❑ ki:  Number of leaves created in the ith step              

(same order of magnitude
(*)

as the entire size).

❑ Si:  The set of the first i segments.

❑ Average on s:
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Expected Size of D (cont.)

❑ ki-1:  Number of internal nodes created in the ith step.

❑ Total size:

 
leaves internal
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Expected Construction Time of D

( )

)log(O))1(O)(logO(

])[E(O))E(depth(O

1

1

nni

k

n

i

n

i

ii

=+=

+





=

=

Finding 

the first 

trapezoid

The rest of 

the work in 

the ith step



Center for Graphics and Geometric Computing, Technion
27

Handling Degeneracies

❑What happens if two segment endpoints 

have the same x coordinate?

❑ Use a shearing                              

transformation:

❑ Higher points will move more to the right.

❑  should be small enough so that this 

transform will not change the order of two 

points with different x coordinates.

❑ In fact, there is no need to shear the plane.  

Comparison rules mimic the shearing.

❑ Prove:  The entire algorithm remains correct.
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