
Center for Graphics and Geometric Computing, Technion
1

Computational Geometry

Chapter 6

Point Location

Center for Graphics and Geometric Computing, Technion
2

Problem Definition
❑ Preprocess a planar map S.

Given a query point p, report
the face of S containing p.

❑ Goal: O(n)-size data structure
that enables O(log n) query time.

❑ Application:
Which state is Baltimore located in?

Answer: Maryland

❑ Trivial Solution: O(n) query time, where n is
the complexity of the map.
(Question: Why is the query time only O(n)?)

S

p

A

D

E

G

F

C

B

Center for Graphics and Geometric Computing, Technion
3

Naïve Solution

❑ Draw vertical lines through all

the vertices of the subdivision.

❑ Store the x-coordinates of the

vertices in an ordered binary

tree.

❑Within each slab, sort the

segments separately along y.

❑ Query time: O(log n).

❑ Problem: Too delicate

subdivision, of size (n2) in

the worst case.

(Give such an example!)

Center for Graphics and Geometric Computing, Technion
4

The Trapezoidal Map

❑ Construct a bounding box.

❑ Assume general position: unique x coordinates.

❑ Extend upward and downward the
vertical line from each vertex until
it touches another segment.

❑ This works
also for
noncrossing
line
segments.

Center for Graphics and Geometric Computing, Technion
5

Properties

❑ Contains triangles
and trapezoids.

❑ Each trapezoid or triangle is determined:
By two vertices that define vertical sides; and

By two segments that define nonvertical sides.

❑More sensitive than the original subdivision.

Center for Graphics and Geometric Computing, Technion
6

Notation

Every trapezoid (or triangle)  is defined by

❑ Left(): a segment endpoint (right or left);

❑ Right(): a segment endpoint (right or left);

❑ Top(): a segment;

❑ Bottom(): a segment.

Center for Graphics and Geometric Computing, Technion
7

Complexity

❑ Theorem (linear complexity):

A trapezoidal map of n segments

contains at most 6n+4 vertices

and at most 3n+1 faces.

❑ Proof:

1. Vertices:

2n + 4n + 4 = 6n + 4

  

2. Faces: Count Left().

2n + n + 1 = 3n + 1

  

original extensions box

left e.p. right e.p. box

Question:

Why does the proof
hold for degenerate
situations?

Center for Graphics and Geometric Computing, Technion
8

Map Data Structure
❑ Possibly by DCEL.

An alternative:

For each trapezoid store:

❑ The vertices that define its
right and left sides;

❑ The top and bottom segments;

❑ The (up to two) neighboring
trapezoids on right and left;

❑ (Optional) The neighboring
trapezoids from above and
below. This number might be
linear in n, so only the leftmost
of these trapezoids is stored.

Note: Computing any
trapezoid from the
trapezoidal structure
can be done in
constant time.

Center for Graphics and Geometric Computing, Technion
9

Search Structure: Branching Rules

❑ Query point q, search-structure node s.

❑ s is a segment endpoint:

q is to the right of s: go right;

q is to the left of s: go left;

❑ s is a segment:

q is below s: go right;

q is above s: go left;

Center for Graphics and Geometric Computing, Technion
10

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

The DAG Search Structure

B

A

C

D

E

F

H

G

J
K

P1

P2

P3

Q1

Q2

Q3

S1

S3

S2

Center for Graphics and Geometric Computing, Technion
11

Q1

P1 Q2

P3

S3

B

C

S1

P2

A

S3 S2

D E F G D H

Q3

S2 S3

J K

Using the Search Structure

B

A

C

D

E

F

H

G

J
K

P1

P2

P3

Q1

Q2

Q3

S1

S3

S2

Center for Graphics and Geometric Computing, Technion
12

Search Structure: Construction

❑ Find a Bounding Box.

❑ Randomly permute the

segments.

❑ Insert the segments one

by one into the map.

❑ Update the map and search

structure in each insertion.

❑ The size of the map is (n).

(This was proven earlier.)

❑ The size of the search

structure depends on the

order of insertion (will be analyzed later).

Center for Graphics and Geometric Computing, Technion
13

Updating the Structures (High Level)

❑ Find in the existing structure the face
that contains the left endpoint
of the new segment. (*)

❑ Find all other trapezoids
intersected by this segment
by moving to the right. (In
each move choose between
two options: Up or Down.)

❑ Update the map Mi and the
search structure Di.

(*) Note: Since endpoints may
be shared by segments, we
need to consider its segment
while searching.

Center for Graphics and Geometric Computing, Technion
14

Update: Simple Case

❑ The segment is contained

entirely in one trapezoid.

❑ In Mi-1: Split the trapezoid into

four trapezoids.

❑ In Di-1: The leaf will be replaced

by a subtree.

❑ Everything is

done in O(1)

time.

Pi

A

Qi

B C

Si

D

A

B

C

D

T

Mi-1

Qi

Pi

Center for Graphics and Geometric Computing, Technion
15

❑ General Case: The ith

segment intersects with

ki>1 trapezoids.

❑ Split trapezoids.

❑Merge trapezoids that

can be united.

❑ Total update time: O(ki).

Update M: General Case

Center for Graphics and Geometric Computing, Technion
16

Updating D: Split

❑ Each inner

trapezoid in Di-1

is replaced by:

❑ Each outer

(e.g., left)

trapezoid in Di-1

is replaced by:

Si

A B

Pi

A

Si

B C

Center for Graphics and Geometric Computing, Technion
17

Updating D: Merge

Si Si

C

Si

EB D F

K

A

B

C

D

E

FK
G

H

Si

H AG

L

❑ Leaves are eliminated and

replaced by one common leaf.

❑ Total update time: O(ki).

L

Center for Graphics and Geometric Computing, Technion
18

Construction: Worst-Case Analysis

❑ Each segment adds trees of depth at most (4-1=) 3,

so the depth of Di is at most 3i.

❑ Query time (depth of Di): O(i), (i) in the worst case.

❑ The ith segment, si, intersects with O(i) trapezoids

((i) in the worst case)!

❑ The size of D and its construction time are then

bounded from above by

.
=

=
n

i

nOiO
1

2)()(

Center for Graphics and Geometric Computing, Technion
19

Construction: Worst-Case Analysis (cont.)

Worst-case example:

Center for Graphics and Geometric Computing, Technion
20

Construction: Worst-Case Analysis (cont.)

Worst-case example:

O(n)

Center for Graphics and Geometric Computing, Technion
21

Construction: Worst-Case Analysis (cont.)

Worst-case example:

The size of D and its

construction time is

in the worst case.


+=
=

=+
n

n
i

n

i

nn

1
2

2
2

1

)()()1(

Center for Graphics and Geometric Computing, Technion
22

Average-Case Analysis

❑We first consider the expected depth of D.

❑ q: A point, to be searched in D.

❑ pi: The probability that a new vertex of D was created

in the path leading to q in the ith iteration.

Compute pi by backward analysis:

❑ q(Mi-1): The trapezoid containing q in Mi-1.

❑ Since a new vertex of D was created in the ith

iteration, q(Mi)  q(Mi-1).

❑ Delete si from Mi.

pi = Prob[q(Mi)  q(Mi-1)]  4/i. (Why?)

Center for Graphics and Geometric Computing, Technion
23

Expected Depth of D

❑ xi: The number of vertices created in the ith

iteration in the path leading to the leaf q.

❑ The expected length of the path leading to q:
q

  .) log(O)3(EE
1 1 1

12

1

  
= = ==

==






 n

i

n

i

n

i

iii

n

i

i npxx

Center for Graphics and Geometric Computing, Technion
24

Expected Size of D

❑ Define an indicator

❑ ki: Number of leaves created in the ith step

(same order of magnitude
(*)

as the entire size).

❑ Si: The set of the first i segments.

❑ Average on s:



 

=
otherwise 0

removed is if from disappears 1
),(

sM
s

i

i

).1(O

analysis) backward (same |)|4(

),(),(][E

)(O

1

11

==
















=














=   

  

i

i

ii

Ss M

ii

Ss M

iii

M

ssk
i ii i





Center for Graphics and Geometric Computing, Technion
25

Expected Size of D (cont.)

❑ ki-1: Number of internal nodes created in the ith step.

❑ Total size:

 
leaves internal

(*)

).(OE)(O)1(E)(O
11

nknkn
n

i

i

n

i

i =







+=








−+ 

==

s

Center for Graphics and Geometric Computing, Technion
26

Expected Construction Time of D

()

)log(O))1(O)(logO(

])[E(O))E(depth(O

1

1

nni

k

n

i

n

i

ii

=+=

+





=

=

Finding

the first

trapezoid

The rest of

the work in

the ith step

Center for Graphics and Geometric Computing, Technion
27

Handling Degeneracies

❑What happens if two segment endpoints

have the same x coordinate?

❑ Use a shearing

transformation:

❑ Higher points will move more to the right.

❑  should be small enough so that this

transform will not change the order of two

points with different x coordinates.

❑ In fact, there is no need to shear the plane.

Comparison rules mimic the shearing.

❑ Prove: The entire algorithm remains correct.








 +
=









y

yx

y

x 


