Computational Geometry

Chapter 6

Point Location

Problem Definition

- ❑ Preprocess a planar map *S.* Given a query point *p*, report the face of *S* containing *p.*
- ❑ **Goal:** O(*n*)-size data structure that enables O(log *n*) query time.
- ❑ **Application:** Which state is Baltimore located in? Answer: Maryland

Naïve Solution

- ❑ Draw vertical lines through all the vertices of the subdivision.
- ❑ Store the *x*-coordinates of the vertices in an ordered binary tree.
- ❑ Within each slab, sort the segments separately along *y*.
- ❑ Query time: O(log *n*).
- ❑ **Problem**: Too delicate subdivision, of size $\Theta(n^2)$ in the worst case.
	- (Give such an example!)

The Trapezoidal Map

□ Construct a bounding box. ❑ Assume general position: unique x coordinates.

❑ Extend upward and downward the vertical line from each vertex until it touches another segment.

❑ This works also for noncrossing line segments.

Properties

❑ Contains triangles and trapezoids.

□ Each trapezoid or triangle is determined:

- **By two vertices that define vertical sides; and**
- By two segments that define nonvertical sides.
- ❑ More *sensitive* than the original subdivision.

Center for Graphics and Geometric Computing, Technion 5 and 5 3 4 5 $\,$ 5

Notation

Every trapezoid (or triangle) Δ is defined by \Box Left(Δ): a segment endpoint (right or left); \Box Right(Δ): a segment endpoint (right or left); \Box Top(Δ): a segment; \Box Bottom(Δ): a segment.

Complexity

❑ **Theorem** (linear complexity)**:** A trapezoidal map of *n* segments contains at most 6*n*+4 vertices and at most 3*n*+1 faces.

❑ **Proof:**

1. Vertices:

 $2n + 4n + 4 = 6n + 4$ \uparrow \uparrow \uparrow **original extensions box**

2. Faces: Count Left(Δ). $2n + n + 1 = 3n + 1$ \uparrow f \uparrow **left e.p. right e.p. box**

Question:

Why does the proof hold for degenerate situations?

Map Data Structure

■ Possibly by DCEL.

An alternative:

For each trapezoid store:

- □ The vertices that define its right and left sides;
- □ The top and bottom segments;
- ❑ The (up to *two*) neighboring trapezoids on right and left;
- □ (Optional) The neighboring trapezoids from above and below. This number might be linear in *n*, so only the leftmost of these trapezoids is stored.

Note: Computing any trapezoid from the trapezoidal structure can be done in constant time.

Center for Graphics and Geometric Computing, Technion 8 (Senter for Graphics and Geometric Computing, Technion

Search Structure: Branching Rules

❑ Query point *q*, search-structure node *s*. ❑ *s* is a segment **endpoint**: *q* is to the **right** of *s*: go **right**; *q* is to the **left** of *s*: go **left**; ❑ *s* is a segment: *q* is **below** *s*: go **right**; *q* is **above** *s*: go **left**;

Search Structure: Construction

- ❑ Find a Bounding Box.
- Randomly permute the segments.
- □ Insert the segments one by one into the map.
- ❑ Update the map and search structure in each insertion.
- \Box The size of the map is $\Theta(n)$. (This was proven earlier.)
- □ The size of the search structure depends on the order of insertion (will be analyzed later).

Updating the Structures (High Level)

❑ Find **in the existing structure** the face that contains the left endpoint of the new segment. (*)

- ❑ Find all other trapezoids intersected by this segment by moving to the right. (In each move choose between two options: Up or Down.)
- ❑ Update the map *Mⁱ* and the search structure *Dⁱ* .

(*) Note: Since endpoints may be shared by segments, we need to consider its segment while searching.

Update: Simple Case

- □ The segment is contained entirely in one trapezoid. □ In *M*_{i-1}: Split the trapezoid into four trapezoids.
- □ In *D*_{i-1}: The leaf will be replaced by a subtree. T

Pi

❑ Everything is done in O(1) time.

A

Center for Graphics and Geometric Computing, Technion 14

B C

S_i

 Q_i

D

A Pi

B

D

 M_{i-1}

 \bigcap

Update *M*: General Case

□ General Case: The ith segment intersects with *ki*>1 trapezoids. ❑ Split trapezoids. ❑ Merge trapezoids that can be united. ❑ Total update time: O(*kⁱ*).

Updating *D*: Split

❑ Each *inner* trapezoid in *D*i-1 is replaced by:

❑ Each *outer* (e.g., left) trapezoid in *D*i-1 is replaced by:

Updating *D*: Merge

❑ Leaves are eliminated and replaced by one common leaf.

❑ Total update time: O(*kⁱ*).

Construction: Worst-Case Analysis

- \Box Each segment adds trees of depth at most (4-1=) 3, so the depth of *Dⁱ* is at most 3*i*.
- □ Query time (depth of D_i): $O(i)$, $\Theta(i)$ in the worst case.
- □ The ^{*i*th} segment, *s_i*, intersects with **O(***i***)** trapezoids $(\Theta(i)$ in the worst case)!
- ❑ The size of *D* and its construction time are then bounded from above by

$$
\sum_{i=1}^n O(i) = O(n^2).
$$

Construction: Worst-Case Analysis (cont.)

Worst-case example:

Construction: Worst-Case Analysis (cont.)

Worst-case example:

Construction: Worst-Case Analysis (cont.)

Worst-case example:

The size of *D* and its construction time is in the worst case.

$$
\sum_{i=1}^{\frac{n}{2}} \Theta(1) + \sum_{i=\frac{n}{2}+1}^{n} \Theta(n) = \Theta(n^2)
$$

Average-Case Analysis

❑ We first consider the expected depth of *D*.

- ❑ *q*: A point, to be searched in *D*.
- □ p_i : The probability that a new vertex of *D* was created in the path leading to q in the ith iteration.

Compute *pⁱ* by backward analysis:

- \Box $\Delta_q(M_{i-1})$: The trapezoid containing *q* in M_{i-1} .
- □ Since a new vertex of *D* was created in the *i*th iteration, $\Delta_q(M_i) \neq \Delta_q(M_{i-1})$.
- □ Delete *s_i* from *M_i*.

 p_i = $\mathsf{Prob}[\Delta_q(M_i) \neq \Delta_q(M_{i\text{-}1})]$)] 4/*i*. (Why?)

Expected Depth of *D*

❑ *xⁱ* : The number of vertices **created in the** *i* **th** iteration in the path leading to the leaf *q*.

❑ The expected length of the path leading to *q*:

$$
\mathbb{E}\left[\sum_{i=1}^n x_i\right] = \sum_{i=1}^n \mathbb{E}[x_i] \le \sum_{i=1}^n (3p_i) \le \sum_{i=1}^n \frac{12}{i} = O(\log n).
$$

q

Expected Size of *D*

❑ Define an indicator

 $\overline{}$ $\left\langle \right\rangle$ $\begin{pmatrix} 1 & \Delta \end{pmatrix}$ Δ , S) = 0 otherwise 1 Δ disappears from M_i if s is removed (Δ, s) M \cdot if s *s i* δ_i

 \Box k ^{\ldots} Number of leaves created in the i th step (same order of magnitude**(*)** as the entire size). ❑ *Sⁱ* : The set of the first *i* segments. ❑ Average on *s*: $=\frac{O(i)}{i} = O(1).$ $\leq \frac{1}{i}(4 | M_i|)$ (same backward analysis) $E[k_i] = \frac{1}{i}$, \sum_{i} $\delta_i(\Delta, s)$ $\left| = \frac{1}{i} \sum_{i} \delta_i(\Delta, s) \right|$ \int $\overline{}$ \parallel \setminus $\bigg($ $=\frac{1}{2}$ > $\sum \delta(\Delta)$ \int $\overline{}$ \parallel \setminus $\bigg($ = $=\frac{1}{i}\sum \big|\sum \delta_i(\Delta,s)\big| = \frac{1}{i}\big|\sum \sum$ \in *S*, \setminus Δ \in *M*, \setminus \setminus *i i* $\sum \sum$ ^{*i*} $s \in S$. $\setminus \Delta \in M$ k_i] = $\frac{1}{i}$ \sum $\left| \sum \delta_i(\Delta, s) \right| = \frac{1}{i} \left| \sum \sum \delta_i(\Delta, s) \right|$ *i i i i* $\delta(\Delta, s)$ = $\frac{1}{2}$ $\sum \delta$

 Δ

Expected Size of *D* (cont.)

 \Box k_f -1: Number of internal nodes created in the i^{th} step. ❑ Total size:

$$
O(n) + E\left(\sum_{i=1}^n (k_i - 1)\right) = O(n) + E\left(\sum_{i=1}^n k_i\right) = O(n).
$$

T T leaves internal**(*)**

Handling Degeneracies

❑ What happens if two segment endpoints have the same *x* coordinate?

❑ Use a shearing transformation:

$$
\varphi \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \varepsilon y \\ y \end{pmatrix}
$$

❑ Higher points will move more to the right.

- $\Box \varepsilon$ should be small enough so that this transform will not change the order of two points with different *x* coordinates.
- □ In fact, there is no need to shear the plane. Comparison rules **mimic** the shearing.
- □ Prove: The entire algorithm remains correct.

