Computational Geometry

Chapter 6

Point Location
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| Problem Definition

Preprocess a planar map S.
Given a query point p, report
the face of S containing p.

Goal: O(n)-size data structure
that enables O(log n) query time.

Application:
Which state is Baltimore located In?

Answer: Maryland

Trivial Solution: O(n) query time, where n Is

the complexity of the map.

(Question: Why is the query time only O(n)?) ,f’ )
2
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Naive Solution

Draw vertical lines through all
the vertices of the subdivision.

Store the x-coordinates of the
vertices in an ordered binary
tree.

Within each slab, sort the
segments separately along vy.
Query time: O(log n).
Problem: Too delicate
subdivision, of size ®(n?) in
the worst case.

(Give such an example!) /f./ﬁ
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| The Trapezoidal Map

Construct a bounding box.

Assume general position: unique X coordinates.

Extend upward and downward the
vertical line from each vertex until
It touches another segment.

This works
also for

noncrossing

line
segments.
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Properties
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Contains triangles : :
and trapezoids. A L -

Each trapezoid or triangle is determined:
m By two vertices that define vertical sides; and
m By two segments that define nonvertical sides.

More sensitive than the original subdivision.
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| Notation

Every trapezoid (or triangle) A is defined by
Left(A): a segment endpoint (right or left);
Right(A): a segment endpoint (right or left);
Top(A): asegment,

Bottom(A): a segment.
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Complexity

Theorem (linear complexity):

A trapezoidal map of n segments
contains at most 6n+4 vertices
and at most 3n+1 faces.
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Proof:
1. Vertices:
2n + 4n + 4 = o6n+4
T T T -

original extensions box

2. Faces: Count Left(A).
Why does the proof

2Tn * ? * % = =l hold for degenerate
situations? A
7 '/‘(’:‘.")/
==

Question:

left e.p. right e.p. box
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| Map Data Structure

Possibly by DCEL.

An alternative:
For each trapezoid store:

The vertices that define its
right and left sides;

The top and bottom segments;
The (up to two) neighboring

trapezoids on right and left; Note: Computing any
(Optional) The neighboring trapezoid from the
trapezoids from above and trapezoidal structure
below. This number might be can be done in

linear in n, so only the leftmost ~ constant time. P
of these trapezoids is stored. -~
8 '(t:/')/
>
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Search Structure: Branching Rules

Query point g, search-structure node s.

S Is a segment endpoint:
m ( is to the right of s: go right;
m ( is to the left of s: go left;

S IS a segment:
m gis below s: go right;
m ( is above s: go left;
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The DAG Search Structure
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Using the Search Structure
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| Search Structure: Construction

Find a Bounding Box.

Randomly permute the
segments.

Insert the segments one
by one into the map.

Update the map and search
structure in each insertion.

The size of the map is ®(n).
(This was proven earlier.)

The size of the search
structure depends on the
order of insertion (will be analyzed later).
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Updating the Structures (High Level)

1 Find In the existing structure the face
that contains the left endpoint
of the new segment. (*)

1 Find all other trapezoids
Intersected by this segment
by moving to the right. (In
each move choose between
two options: Up or Down.)

I Update the map M, and the
search structure D,.

(*) Note: Since endpoints may
be shared by segments, we

need to consider its segment =
while searching. ) 7 »
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| Update: Simple Case

The segment is contained
entirely in one trapezoid.

In M_;: Split the trapezoid into
four trapezoids.

In D, ;: The leaf will be replaced
by a subtree. T

Everything Is
done in O(1)
time.

Center for Graphics and Geometric Computing, Technion

14 >
L=



| Update M: General Case

General Case: The ith
segment intersects with
k>1 trapezoids.

Split trapezoids.

Merge trapezoids that
can be united.

Total update time: O(k;).
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| Updating D: Split

Each inner
trapezoid in D, ;
IS replaced by:

Each outer
(e.q., left)

trapezoid in D, ;
IS replaced by:

Wa

A N !}/
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Updating D: Merge

Leaves are eliminated and
replaced by one common leaf.

Total update time: O(k;).




| Construction: Worst-Case Analysis

Each segment adds trees of depth at most (4-1=) 3,
so the depth of D, is at most 3.

Query time (depth of D)): O(i), ©(i) in the worst case.
The ith segment, s, intersects with O(i) trapezoids
(®(i) in the worst case)!

The size of D and its construction time are then
bounded from above by

> 0(i)=0(n’)
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| Construction: Worst-Case Analysis (cont.)

Worst-case example:
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| Construction: Worst-Case Analysis (cont.)

Worst-case example:

10(n)
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| Construction: Worst-Case Analysis (cont.)

Worst-case example:

n

The size of Dand its 2

construction time is Z@(l) + Z@(n) =O(n?)

In the worst case. i—1 )
I=—+1 =
2 pw A
f/’ < )
21 Nz
o
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| Average-Case Analysis

We first consider the expected depth of D.
g. A point, to be searched in D.

pi: The probabllity that a new vertex of D was created
in the path leading to g in the it" iteration.

Compute p; by backward analysis:
A¢(M;1): The trapezoid containing g in M.

Since a new vertex of D was created in the it
iteration, Aq(Mi) # Aq(l\/li_l)_

Delete s; from M..
p; = Prob[A,(M)) = Ay(M; )] < 4/i.  (Why?)
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| Expected Depth of D

X;: The number of vertices created in the it
iteration in the path leading to the leaf q.

The expected length of the path leading to q:

= ixi :ZH:E[xi]SZn:(C%pi)sZn:%:O(Iog n).
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| Expected Size of D

Define an indicator
1 Adisappearsfrom M. if s isremoved
0.(A,S) =

0 otherwise

ki Number of leaves created in the i" step
(same order of magnitude®™ as the entire size).

S;: The set of the first i segments.
Average on s:

111 5| To09 -1 £ T

SESi AEMi SESi AEMi

<i(4|M,]) (same backward analysis)

=20 = 0(1). W
A < )
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| Expected Size of D (cont.)

k-1: Number of internal nodes created in the i" step.

Total size:
o(n) + E(Z (k —1)j —0(n) + E(Z kij - O(n).
T T
leaves internal®
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| Expected Construction Time of D

n

> (O(E(depth;)) + O(E[K;]))

_ Z(O(Iog 1)+0(1) =0(nlogn)

Finding The rest of
the first the work In
trapezoid the it step

SA
>0
26 A
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| Handling Degeneracies

What happens if two segment endpoints
have the same x coordinate?

Use a shearing X X+ &y /
transformation: gp[ j [ j /
y

Higher points will move more to the right.

& should be small enough so that this
transform will not change the order of two
points with different x coordinates.

In fact, there is no need to shear the plane.
Comparison rules mimic the shearing.

Prove: The entire algorithm remains correct.
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