Computational Geometry

Chapter 6

Point Location

Problem Definition

- Preprocess a planar map S. Given a query point p, report the face of S containing p.
- □ **Goal:** O(*n*)-size data structure that enables O(log *n*) query time.
- Application: Which state is Baltimore located in? Answer: Maryland
- Trivial Solution: O(n) query time, where n is the complexity of the map. (Question: Why is the query time only O(n)?)

Naïve Solution

- Draw vertical lines through all the vertices of the subdivision.
- Store the x-coordinates of the vertices in an ordered binary tree.
- Within each slab, sort the segments separately along y.
- **Query time:** $O(\log n)$.
- Problem: Too delicate subdivision, of size $\Theta(n^2)$ in the worst case.
 - (Give such an example!)

The Trapezoidal Map

Construct a bounding box.
 Assume general position: unique x coordinates.

Extend upward and downward the vertical line from each vertex until it touches another segment.

This works also for noncrossing line segments.

Properties

Contains triangles and trapezoids.

Each trapezoid or triangle is determined:

- By two vertices that define vertical sides; and
- By two segments that define nonvertical sides.
- More sensitive than the original subdivision.

Notation

Every trapezoid (or triangle) Δ is defined by

- \Box Left(Δ): a segment endpoint (right or left);
- **Right**(Δ): a segment endpoint (right or left);
- **Top**(Δ): a segment;

Bottom(Δ): a segment.

Complexity

Theorem (linear complexity): A trapezoidal map of *n* segments contains at most 6*n*+4 vertices and at most 3*n*+1 faces.

Proof:

1. Vertices:

2n + 4n + 4 = 6n + 4 $\uparrow \qquad \uparrow \qquad \uparrow$ original extensions box

2. Faces: Count Left(Δ). 2n + n + 1 = 3n + 1 $\uparrow \qquad \uparrow \qquad \uparrow$ left e.p. right e.p. box

Question:

Why does the proof hold for degenerate situations?

Map Data Structure

- Possibly by DCEL.
- An alternative:
- For each trapezoid store:
- The vertices that define its right and left sides;
- The top and bottom segments;
- The (up to two) neighboring trapezoids on right and left;
- (Optional) The neighboring trapezoids from above and below. This number might be linear in n, so only the leftmost of these trapezoids is stored.

Note: Computing any trapezoid from the trapezoidal structure can be done in constant time.

8

Search Structure: Branching Rules

Query point q, search-structure node s.
s is a segment endpoint:

q is to the right of s: go right;
q is to the left of s: go left;

s is a segment:

q is below s: go right;
q is above s: go left;

Search Structure: Construction

- Find a Bounding Box.
- Randomly permute the segments.
- Insert the segments one by one into the map.
- Update the map and search structure in each insertion.
- The size of the map is Θ(n). (This was proven earlier.)
- The size of the search structure depends on the order of insertion (will be analyzed later).

Updating the Structures (High Level)

Find in the existing structure the face that contains the left endpoint of the new segment. (*)
 Find all other trapezoids intersected by this segment by moving to the right. (In each move choose between two options: Up or Down.)
 Update the map *M* and the

Update the map M_i and the search structure D_i .

(*) Note: Since endpoints may be shared by segments, we need to consider its segment while searching.

Update: Simple Case

- The segment is contained entirely in one trapezoid.
 In *M*_{i-1}: Split the trapezoid into
- four trapezoids.
- □ In D_{i-1} : The leaf will be replaced by a subtree. \top

P

B

Everything is done in O(1) time.

A

 M_{i-1} B APi С

Update M: General Case

General Case: The *i*th segment intersects with *k_i*>1 trapezoids.
 Split trapezoids.
 Merge trapezoids that can be united.

Total update time: $O(k_i)$.

Updating D: Split

Each inner trapezoid in D_{i-1} is replaced by:

Each outer (e.g., left) trapezoid in D_{i-1} is replaced by:

16

Updating D: Merge

Leaves are eliminated and replaced by one common leaf.

Total update time: $O(k_i)$.

Construction: Worst-Case Analysis

- Each segment adds trees of depth at most (4-1=) 3, so the depth of D_i is at most 3i.
- Query time (depth of D_i): O(i), $\Theta(i)$ in the worst case.
- The *i*th segment, s_i, intersects with O(*i*) trapezoids (Θ(*i*) in the worst case)!
- The size of D and its construction time are then bounded from above by

$$\sum_{i=1}^n O(i) = O(n^2).$$

Construction: Worst-Case Analysis (cont.)

Worst-case example:

Construction: Worst-Case Analysis (cont.)

Worst-case example:

Construction: Worst-Case Analysis (cont.)

Worst-case example:

The size of *D* and its construction time is in the worst case.

$$\sum_{i=1}^{\frac{n}{2}} \Theta(1) + \sum_{i=\frac{n}{2}+1}^{n} \Theta(n) = \Theta(n^2)$$

Average-Case Analysis

We first consider the expected depth of D.

- \Box q: A point, to be searched in D.
- \square p_i : The probability that a new vertex of D was created in the path leading to q in the *i*th iteration.

Compute p_i by backward analysis:

- $\Box \Delta_q(M_{i-1})$: The trapezoid containing q in M_{i-1} .
- Since a new vertex of *D* was created in the *i*th iteration, $\Delta_q(M_i) \neq \Delta_q(M_{i-1})$.
- \Box Delete s_i from M_i .

 $p_i = \operatorname{Prob}[\Delta_q(M_i) \neq \Delta_q(M_{i-1})] \le 4/i.$ (Why?)

Expected Depth of D

 $\Box x_i$: The number of vertices **created in the** *i*th iteration in the path leading to the leaf *q*.

The expected length of the path leading to *q*: $E\left[\sum_{i=1}^{n} x_{i}\right] = \sum_{i=1}^{n} E[x_{i}] \le \sum_{i=1}^{n} (3p_{i}) \le \sum_{i=1}^{n} \frac{12}{i} = O(\log n).$

Expected Size of D

Define an indicator

 $\delta_i(\Delta, s) = \begin{cases} 1 & \Delta \text{ disappears from } M_i \text{ if } s \text{ is removed} \\ 0 & \text{otherwise} \end{cases}$

 $\Box k_i$: Number of leaves created in the *i*th step (same order of magnitude^(*) as the entire size). \Box S_{*i*}: The set of the first *i* segments. Average on s: $\mathbf{E}[k_i] = \frac{1}{i} \sum_{s \in S_i} \left(\sum_{\Delta \in M_i} \delta_i(\Delta, s) \right) = \frac{1}{i} \left(\sum_{s \in S_i} \sum_{\Delta \in M_i} \delta_i(\Delta, s) \right)$ $\leq \frac{1}{i} (4 | M_i |)$ (same backward analysis) $=\frac{O(i)}{i}=O(1).$

Center for Graphics and Geometric Computing, Technion

24

Δ

Expected Size of D (cont.)

k_i-1: Number of internal nodes created in the *i*th step.
 Total size:

$$O(n) + E\left(\sum_{i=1}^{n} (k_i - 1)\right) = O(n) + E\left(\sum_{i=1}^{n} k_i\right) = O(n).$$

leaves internal^(*)

Handling Degeneracies

What happens if two segment endpoints have the same x coordinate?

Use a shearing transformation:

$$\varphi\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x + \mathcal{E}y\\ y \end{pmatrix}$$

Higher points will move more to the right.

- E should be small enough so that this transform will not change the order of two points with different x coordinates.
- In fact, there is no need to shear the plane. Comparison rules **mimic** the shearing.
- Prove: The entire algorithm remains correct.

