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On the Agenda

Order-preserving duality
Non-order-preserving dualities
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| Order-Preserving Duality

Point: P(a,b) Dual line: P y=ax-b

Line: ¢:y=ax+b |Dual point: " (a,-b)

Note: Vertical lines (x=C, for a constant C) are not
mapped by this duality (or, actually, are mapped to
“points at infinity”). We ignore such lines since we can:
Avoid vertical lines by a slight rotation of the plane; or
Handle vertical lines separately. )
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| Duality Properties

Self-inverse: (P)' =P, (") =".
Incidence preserving: Pef < (e P,
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Order preserving:
P above/on/below ¢ < ¢ above/on/below P°
(the point is always below/on/above the line).
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| Duality Properties (cont.)

Points P,,P,,P; collinear on ¢

|

Lines P,", P,", P intersect at ¢".

(Follows directly from property 2.)
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| Duality Properties (cont.)

The dual of a line segment s=[P,P,] is a double wedge
that contains all the dual lines of points P on s.

All these points P are collinear, therefore, all their dual
lines intersect at one point, the intersection of P,* and

*

Line ¢ intersects segments < {*e s*.

Question: How can ¢ be located so that £ * P
appears in the right side of the double wedge? 6 ,f~’
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| The Envelope Problem

Problem: Find the (convex)
lower/upper envelope of a
set of lines £, — the boundary
of the intersection of the
halfplanes lying
below/above all the lines.

Theorem: Computing the lower
(upper) envelope is equivalent to
computing the upper (lower)
convex hull of the points £ in the
dual plane.

Proof: Using the order-preserving property. A
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Parabola: Duality Interpretation

Theorem: The dual line of a point on the parabola
y=x?/2 is the tangent to the parabola at that point.

Proof:
m Consider the parabola y=x?/2. Its derivative is y’'=x.
m A point on the parabola: P(a,a?/2). Its dual: y=ax-a?/2.

m Compute the tangent at P: Itis the line y=cx+d passing
through (a,a?/2) with slope c=a.
Therefore, a?/2=a-a+d, that is,
d=-a2/2, so the line is y=ax-a?/2.

P(a,a?/2)
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| Parabola: Duality Interpretation (cont.)

And what about points not on the parabola?

The dual lines of two points (a,b,) and (a,b,) have
the same slope and the opposite vertical order with
vertical distance |b;-b,|.
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| Yet Another Interpretation

Problem:
Given a point g below the parabola, what is the line g*?

Construct the two tangents £, £, to the parabola
y=x24/2 that pass through g. Denote the tangency
points by P,, P..

Draw the line joining P,
and P,. This is g*!
Reason:

gon{, — P,={,* on g*.
gon{, — P,=£*on g*.
Hence, q* = P,P..
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First Non-Preserving Duality

Primal plane Dual plane

(1. /)} Y =02 h

Note: Point " is below all lines in the dual plane
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Second Non-Preserving Duality

Primal plane Dual plane

( })p (1, f'/ } — Y = —QaT T b

Note: Point " is below all lines in the dual plane

Center for Graphics and Geometric Computing, Technion




The Preserving Duality

o

'[)lf Y

Primal plane Dual plane

(c) (a, b) « Y = AL — b

Point-line relations are preserved in the dual plane
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