Computational Geometry

Chapter 8

Duality

On the Agenda

Order-preserving duality
 Non-order-preserving dualities

2

Order-Preserving Duality

Point: <i>P(a,b)</i>	Dual line: P*: y=ax-b
Line: <i>l</i> : <i>y=ax+b</i>	Dual point: <i>l</i> *: (a,-b)

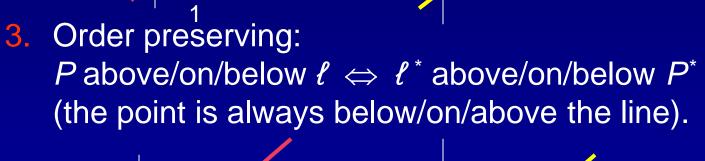
Note: Vertical lines (*x*=C, for a constant C) are not mapped by this duality (or, actually, are mapped to "points at infinity"). We ignore such lines since we can:
Avoid vertical lines by a slight rotation of the plane; or
Handle vertical lines separately.

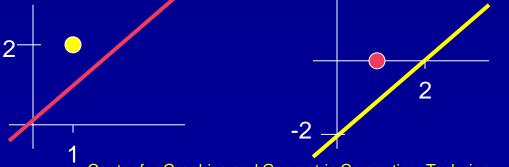
Center for Graphics and Geometric Computing, Technion

Duality Properties

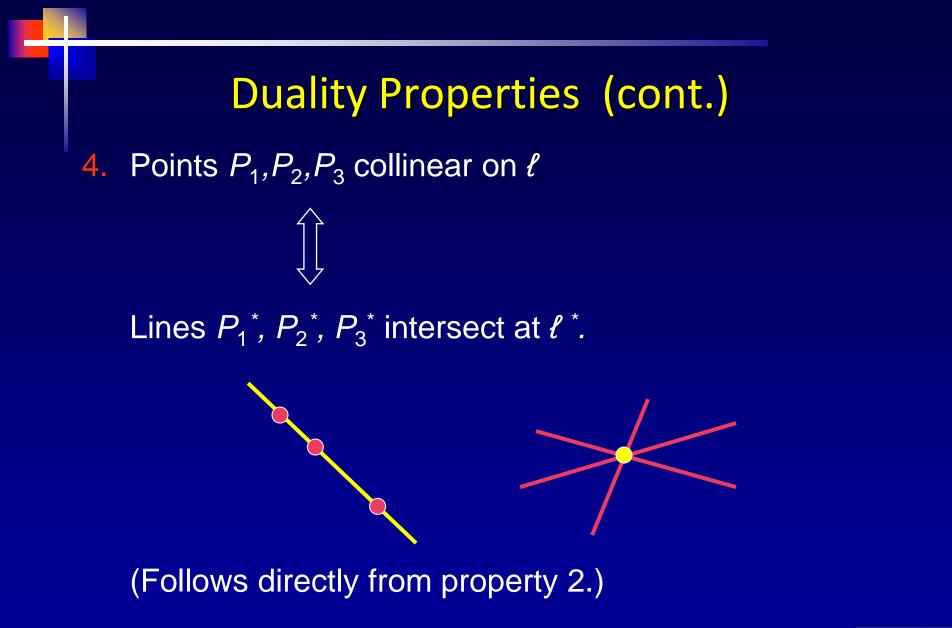
1. Self-inverse: $(P^*)^* = P$, $(\ell^*)^* = \ell$.

2. Incidence preserving: $P \in \ell \iff \ell^* \in P^*$.





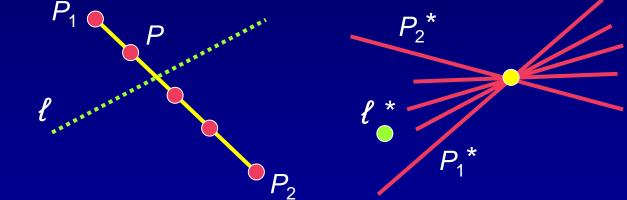
Center for Graphics and Geometric Computing, Technion



5

Duality Properties (cont.)

5. The dual of a line segment $s=[P_1P_2]$ is a *double wedge* that contains all the dual lines of points *P* on *s*. All these points *P* are collinear, therefore, all their dual lines intersect at one point, the intersection of P_1^* and P_2^* .



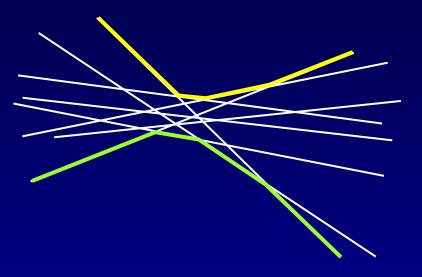
6. Line ℓ intersects segment s ⇔ ℓ*∈ s*.
Question: How can ℓ be located so that ℓ* appears in the right side of the double wedge?

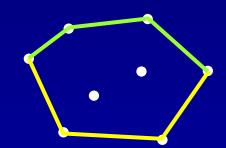
Center for Graphics and Geometric Computing, Technion

The Envelope Problem

Problem: Find the (convex) lower/upper envelope of a set of lines lines lines lines lines of the intersection of the halfplanes lying below/above all the lines.

Theorem: Computing the lower (upper) envelope is equivalent to computing the upper (lower) convex hull of the points ℓ_i^* in the dual plane.





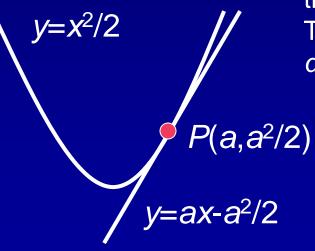
Proof: Using the order-preserving property.

Parabola: Duality Interpretation

☐ Theorem: The dual line of a point on the parabola $y=x^2/2$ is the tangent to the parabola at that point.

Proof:

- Consider the parabola $y=x^2/2$. Its derivative is y'=x.
- A point on the parabola: $P(a,a^2/2)$. Its dual: $y=ax-a^2/2$.
- Compute the tangent at *P*: It is the line y=cx+d passing

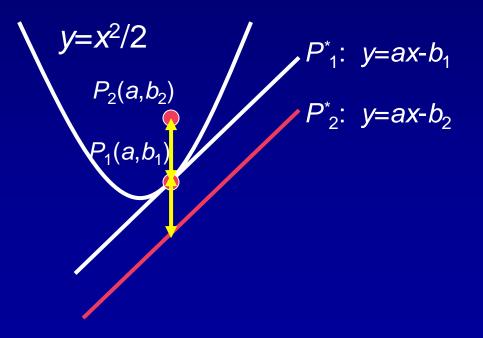


through $(a,a^2/2)$ with slope c=a. Therefore, $a^2/2=a \cdot a + d$, that is, $d=-a^2/2$, so the line is $y=ax-a^2/2$.

Parabola: Duality Interpretation (cont.)

And what about points not on the parabola?

The dual lines of two points (a,b₁) and (a,b₂) have the same slope and the opposite vertical order with vertical distance |b₁-b₂|.



9

Yet Another Interpretation

Problem:

Given a point q below the parabola, what is the line q^* ?

Construct the two tangents l₁, l₂ to the parabola y=x²/2 that pass through q. Denote the tangency points by P₁, P₂.
 Draw the line joining P₁

 P_2

 \boldsymbol{Q}

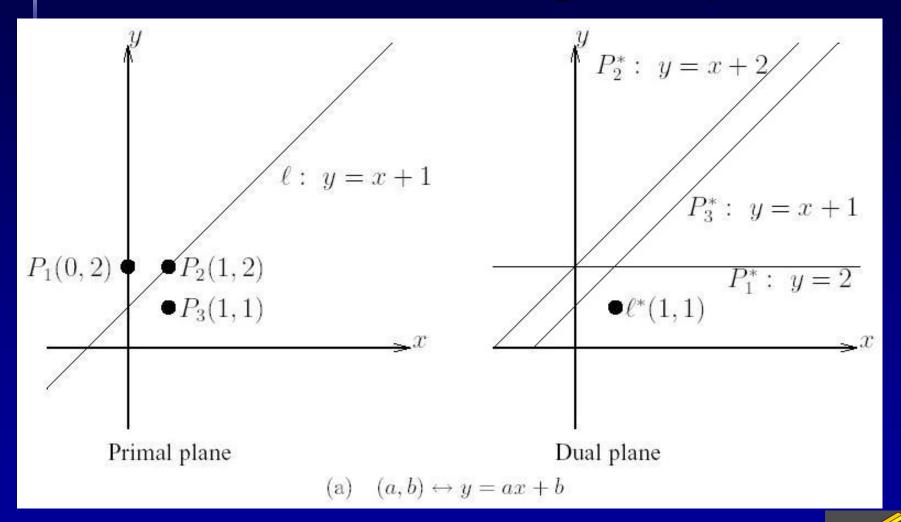
10

and P_2 . This is $q^*!$

Reason:

 $q \text{ on } \ell_1 \rightarrow P_1 = \ell_1^* \text{ on } q^*.$ $q \text{ on } \ell_2 \rightarrow P_2 = \ell_2^* \text{ on } q^*.$ Hence, $q^* = \overline{P_1 P_2}.$

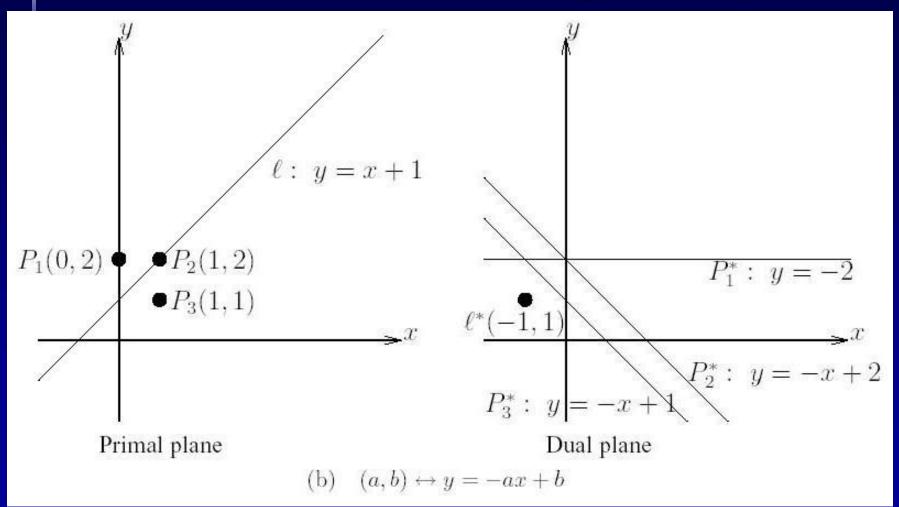
First Non-Preserving Duality



Note: Point ℓ^* is below **all** lines in the dual plane

Center for Graphics and Geometric Computing, Technion

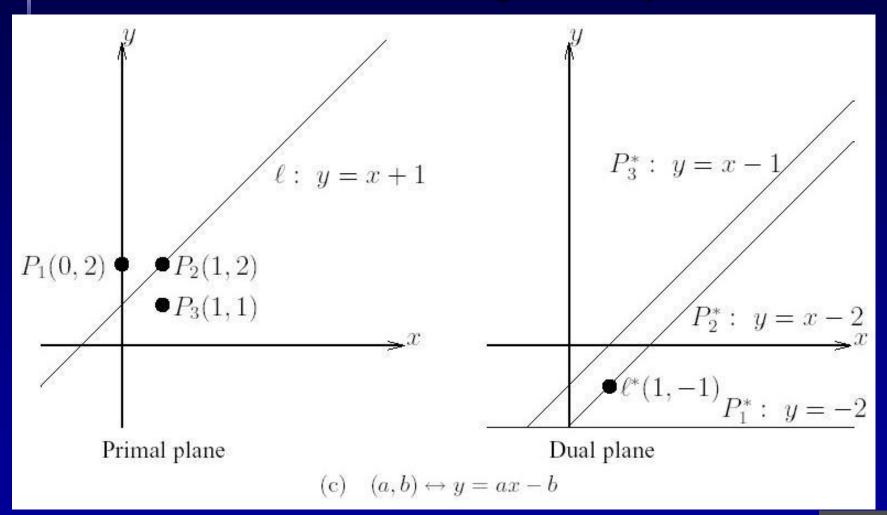
Second Non-Preserving Duality



Note: Point ℓ^* is below **all** lines in the dual plane

Center for Graphics and Geometric Computing, Technion

The Preserving Duality



Point-line relations are preserved in the dual plane

Center for Graphics and Geometric Computing, Technion