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Computational Geometry

Chapter 11

The Crossing-Number Lemma
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On the Agenda

❑ The Crossing-Number Lemma

❑ Applications to combinatorial problems
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Historical Perspective

Paul Erdős (born 1913 in Hungary, died 1996) was one 
of the greatest mathematicians of the 20th century.  He 
published thousands of research papers during about 
70 years, most of which dealing with problems in 
combinatorial geometry.  Due to their difficulty, they got 
the nickname “Hard Erdős Problems.”  In 1982/3, the 
so-called crossing-number lemma, motivated by 
optimization problems in chip design, was proven.  
Only in 1998 Székely discovered that many hard Erdős 
problems can be solved (at least partially, but yielding 
no worse bounds) by ridiculously simple applications of 
this lemma.  This opened a new era in combinatorial 
geometry, e.g., for proving a mile-stone upper bound 
on the complexity of the kth level in an arrangement    
of n lines.
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The Crossing Number

❑ The crossing number of a graph G, #cr(G), is the 
minimum number of edge crossings in a planar 
drawing of G.

❑ Corollary of Euler’s formula:  In every simple* planar 
graph  e  3v-6  (where e and v are the numbers of 
edges and vertices, respectively).

❑ Hence a graph in which  e > 3v-6  cannot be planar.  
For example:

v = 5

93v-6 = 

e = 10

#cr = 1
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The Crossing-Number Lemma

❑ [Ajtai, Chvátal, Newborn, and Szemerédi, 1982]  and

[Leighton, 1983].                                               

Originally proven by induction on the graph complexity.

❑ Let G be a simple graph with v vertices and e  4v

edges.  Then:

❑ Remark:  “Simple” means

No parallel edges;

No self edges.

)/()(cr# 23 veG =
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A Probabilistic Proof “From the Book” 
(Chazelle, Sharir, Welzl)

❑ Consider a planar embedding of a graph with v vertices,    

e edges, and c = #cr pairs of crossing edges.

❑ By Euler’s formula  c  e–(3v–6) > e–3v.  (Why?)

❑ Choose a random subset of the vertices, each vertex with 

probability p (to be defined later).

❑ The expected number of vertices, edges, and crossings in 

the induced subgraph are pv, p2e, and p4c, respectively. 

❑ That is,  p4c > p2e – 3pv  (why?).  Hence,  c > e/p2 – 3v/p3. 

Choosing  p = 4v/e (thus, 0  p  1 as needed) yields                          

c > e3 / (16v2) – 3e3 / (64v2) = e3 / (64v2).

❑ Question:  Why is this a proof?

❑ The constant 1/64 can be improved (enlarged) from             

1/64 ≈ 0.0156 to 4/135 ≈ 0.0296 (and even more).

That is, why does this 
probabilistic proof show 
that the claim always holds?
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Application I:  Segment Intersections

❑ Given a complete graph G with n points in the plane in 

general position (no three collinear points).

❑ Problem:  What is the crossing number of G?

❑ Simple upper bound: O(n4) intersections.  (Why?)

❑ Lower bound (by the lemma):

❑ That is, we have a tight bound of (n4) on the c.n. of G.

❑ Question:  Why can we apply the lemma?

❑ Question:  Does it matter if the graph                            

is geometric?  (A geometric graph is                       

made of straight line-segments only.)

( )( ) ( )423 2 / nnn =
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Application II:  Point-Line Incidences
❑ Let P be a set of n distinct points and L a set of ℓ

distinct lines. 

❑ An incidence of P and L is a pair (p,q), where p  P,
q  L, and p lies on q.  #i(P,L) is the number of such 
incidences.

❑ The minimum possible value of #i(P,L) is obviously 0.

❑What is the maximum possible value of #i(P,L)?

❑ Clearly, #i = O(nℓ).  Can we do better?

❑ Theorem:

(note the role of the (n+ℓ) term)

n = 6

ℓ = 2

#i = 6

))((Oi# 3/2  ++= nn
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Proof of the P/L-I Theorem

❑ For a given point-set P and line-set L, construct a graph 

in which each point in P is a vertex, and an edge 

connects every pair of consecutive points along a line 

of L.

❑ For each line q,  e(q) = v(q)–1.  (Why?)

❑ Sum up over all lines in L to obtain  e = #i–ℓ.  (Why?)

❑ Trivially, in the graph  #cr  ℓ2.  (Why?)
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Proof of the P/L-I Theorem  (cont.)

Case 1:  e  4n

→ 4n  #i–ℓ

→ #i  4n+ℓ

→ #i = O(n+ℓ)

Case 2:  e  4n

#cr = (e3/n2) = ((#i–ℓ)3/n2)

#cr = O(ℓ2)

→ (#i–ℓ)3 = O(n2ℓ2)

→ #i = O((nℓ)2/3+ℓ)

))((Oi# 3/2  ++= nn

Note:  in the special case  ℓ = n,  #i = O(n4/3).

e = #i–ℓ
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Application III  (Number Theory)

❑ Let A be a set of n distinct integer numbers.

❑ AA+A is the set of integers created by multiplying two 

elements from A, and adding another element.

❑ Clearly,

k = |AA+A| = (n)  (but not completely trivially, since,       

e.g., (-2)(-2)+(-2) = 11+1, so why?), 

and

k = O(n3).  (Why?)

❑ How small can k really be?
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Solution

❑ Let S be a set of points:  S = {(x,y) | xA, yAA+A}.

Obviously, |S| = nk.

❑ Draw all the lines of the form  y=aix+aj,  where  ai,aj  A.

❑ Observations (justify!):

1. There are exactly n2 such lines;

2. Each such line passes through exactly n points of S.

❑ Therefore, #i = n3.
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Applying the Crossing-Number Lemma

❑ Recall:  nk points, n2 lines.

❑ According to the point/line-incidences theorem,          

n3 = #i = O(((nk)n2)2/3 + n2 + nk) = O(n2k2/3 + n2 + nk).

❑ But:  n2 = O(n2k2/3)  and  

k  n3  → k1/3  n → nk  n2k2/3    !

❑ That is,

n3 = O(n2k2/3)   → k2/3 = (n)   → k = (n3/2).

So these two terms 

are redundant!



x⅓ nk⅔


