Chapter 4

Random sampling

The randomization method has proved useful in computational geometry. This
usefulness can be ascribed in large part to a few probabilistic theorems which
rely on combinatorial properties of certain geometric problems. The probabilities
involved in those theorems concern random samples from the set of data, and do
not involve statistical assumptions about the distribution of these data.

The goal of this chapter is to present those probabilistic theorems on which
the analysis of the randomized incremental method is based. This method is
described in chapters 5 and 6. We express these theorems in a framework gen-
eral enough to be adaptable to different geometric settings. All the randomized
algorithms presented below fit into the same framework as the one that we define
here.

The first part of this chapter recalls the necessary definitions and notation.
The second part proves the basic two theorems: the sampling theorem, and the
moment theorem. These theorems provide the main tools to analyze the average
performance of randomized algorithms.

4.1 Definitions

4.1.1 Objects, regions, and conflicts

In the framework presented here, any geometric problem can be formulated in
terms of objects, regions, and conflicts between these objects and regions.

Objects are elements of a universe O, usually infinite. The input to some
problem will be a set S of objects of (3. The objects under consideration are
typically subsets of the Euclidean space E% such as points, line segments, lines,
half-planes, hyperplanes, half-spaces, etc.

A region is a member of a set F of regions. Each region is associated with two
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sets of objects: those that determine it, and those that conflict with it.

The set of objects that determine a region is a finite subset of @, of cardinality
bounded by some constant b. The constant b depends on the nature of the
problem, but not on the actual instance nor on its size. This restriction is required
for all the probabilistic theorems to be expressed within the framework.

The set of objects that conflict with a given region is usually infinite and is
called the domain of influence of the region.

Let S be a set of objects. A region F of F is defined over S if the set of objects
that determines it is contained in S. A region F is said to be without conflict
over S if its domain of influence contains no member of S, and otherwise is said
to have j conflicts over S if its domain of influence contains j objects of S.

For each geometric application, the notions of objects, regions, and conflicts
are defined in such a way that the problem is equivalent to finding all the regions
defined and without conflict over S.

Let us immediately discuss a concrete example. Let S be a set of n points
in the d-dimensional Euclidean space E®. The convex hull of S is the smallest
conveXx set containing S; suppose we wish to compute it. Assume the points are in
general position!. The convex hull conv(S) is a polytope whose special properties
will be studied further in chapter 7. For now, it suffices to notice that, in order
to compute the convex hull, we have to find all the subsets of d points in § such
that one of the half-spaces bounded by the hyperplane passing through these d
points contains no other point that belong to & (see figure 4.1). In this example,
the objects are points, and the regions are open half-spaces in E¢. Every set of
d points determines two regions: the open half-spaces whose boundaries are the
hyperplane passing through these points. A point is in conflict with a half-space
if it lies inside it. To find the convex hull, one must find all the regions determined
by points of § and without conflict over S.

The preceding definitions call for a few comments.

Remark 1. A region is determined by a finite and bounded number of objects
and this restriction is the only fundamental condition that objects, regions, and
conflicts must satisfy. Nevertheless, we do not demand that all the regions be
determined by exactly the same number of objects. In the case of the convex hull
of n points in E%, all the regions are determined by exactly d points. One may
envision other settings (as in the case of the vertical decomposition of a set a line
segments in the plane, discussed in subsection 5.2.2), where the regions can be
determined by a variable number ¢ of objects, provided that 1 < ¢ < b for some
constant b.

Remark 2. A region does not conflict with the objects that determine it. This

1A set of points is in general position if every subset of k +1 < d + 1 points is affinely
independent, or in other words if it generates an affine subspace of dimension k.
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Figure 4.1. Convex hull and empty half-spaces.

simple convention greatly simplifies the statements and proofs of the theorems
below, and does not modify their meaning. In the case of the convex hull, this
can be easily achieved by defining the domain of influence of a region as an open
half-space.

Remark 3. A region is characterized by two sets of objects: the set of objects
that determine it, and the set of objects that conflict with it. Regions determined
by different objects will be considered as different, even if they share the same
domain of influence. In this context, a set & of objects is in general position
precisely if any two regions determined by different subsets of & have distinct
domains of influence.

Remark 4. A set of b or fewer objects may determine one, or more, or zero
regions. Usually, the number of regions determined by a given set of (less than b)
objects is bounded by a constant. For instance, in the case of convex hulls, every
subset of d points determines exactly two regions. In this case, the total number
of regions defined over a set of cardinality n is O(n?).

If S is a finite set of objects, say with n elements, we denote by F(S) the set
of regions defined over S and, for each integer j in [0,n], we denote by F;(S)
the set of all regions defined over § that have j conflicts over §. In particular,
Fo(S) is the set of those regions that are defined over S and without conflict over
S. Furthermore, we denote by F<(S) the subset of regions defined over S that
have at most k conflicts over S.

When the regions are determined by a variable number ¢ of objects (1 < i < b),
the preceding notation may be refined to denote by .7-'}(8), FL(8), FLi(8), the
subsets of those regions defined by exactly ¢ objects of S, with (respectively)
exactly, at most, at least, k conflicts with the objects of S.
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Figure 4.2. Instances of regions.

4.1.2 Random sampling

Let R be a subset of S with cardinality r. This subset R is a random sample of
S if its elements are randomly chosen among all those of S, such that each subset
is equally likely to be chosen with probability 1/ (7:) In what follows, we shall
call such a subset a random r-sample of the set S.

The notation defined in the previous subsection is valid over any subset R of S.
In particular, F(R) is the set of regions defined over R, F;(R) is the set of regions
defined over R that have j conflicts over R, and FJ'(R) is the set of of regions
defined by exactly ¢ objects of R that have j conflicts over R. Since we may also
be interested in the conflicts over S of a region defined over R, or the converse,
we will avoid any ambiguities by setting up a special terminology. Henceforth,
by a region defined and without conflict over R, we shall mean a region defined
over R and without conflict over R; these are the regions of Fy(R). Likewise,
a region defined and with j conflicts over R is a region defined over R and that
has j conflicts over R; these are the regions of F;(R).

In figure 4.2, the points of the subset R are enclosed by squares, the half-space
F* belongs to Fg(S) and to Fo(R), while F~ belongs to F19(S) and to F3(R).

From now on, we are primarily interested in the regions defined over a random
sample R from S. Generally speaking, if g(R) is a function of the sample R,
we denote by g(r,S) the expected value of g(R) for a random r-sample of S. In
particular, the following functions are defined: We denote by f;(R) the number
of regions defined and with j conflicts over a subset R of S (in mathematical
notation, f;(R) = |F;(R)|). Following our convention, f;(r,S) denotes the ex-
pected number of regions defined and with j conflicts over a random r-sample of
S. Likewise, fj(R) stands for the number of regions defined by i objects of R
and with j conflicts over R (in mathematical notation, f;(’R) = |F}(R)|)- Then
f;-'(r, S) is the expected number of such regions for a random r-sample of S.
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4.2 Probabilistic theorems

In this section, we prove two probabilistic theorems, the sampling theorem and
the moment theorem. These two theorems lay the foundations for our analysis
of randomized algorithms as described in chapters 5 and 6. The reader mostly
interested in the algorithmic applications of these theorems may skip this section
in a first reading. In order to understand the results, it would be enough to
memorize the definition of a moment, to look up lemma 4.2.5, and to admit
corollary 4.2.7.

The probabilistic theorems below are based on certain combinatorial properties
of the geometric objects. The probabilities involved concern mainly random
samples from the input data. In particular, these theorems do not make any
assumptions on the statistical distribution of the input data. The theorems are
stated in the formal framework introduced in the preceding section. Nevertheless,
to shape the intuition of the reader, we start by stating them explicitly for the
specific problem of computing the convex hull of a set of points in the plane.

Let S be a set of n points in the plane, assumed to be in general position,
let k be an integer smaller than n and let R be a random sample of S of size
r = |n/k]. The sampling theorem links the number of half-spaces defined over
S and containing at most k points of S, with the expected number of half-spaces
defined and without conflict over R, which is precisely the number of edges of
the convex hull conv(R). Let A and B be points of S. Segment AB is an edge of
the convex hull conv(R) if and only if A and B are points of R and also one the
half-planes HIB and H,p bounded by the line AB does not contain any points
of R. The sampling theorem relies on the fact that the segment AB joining two
points of S is an edge of the convex hull conv(R) with a probability that increases
as the smallest number of points in either HXB or H,, decreases.

The moment theorem concerns the number of points in § and in its sample R
that belong to some half-plane. If the size of R is large enough, the sample is
representative of the whole set, and the number of points of R in a half-plane is
roughly the number of points of S in this half-plane scaled by the appropriate
factor r/n.

In fact, the moment theorem is a little more restrictive and concerns only
those half-planes defined and without conflict over the sample. Any edge F of
conv(R) corresponds to a region defined and without conflict over R: the half-
plane H~(FE) bounded by the line supporting E that contains no point of R.
The first moment of R relative to S, or moment of order 1, is defined to be the
sum, over all edges E of the convex hull conv(R), of the number of points of S
lying inside H~(E). In other words, the moment of order 1 of R with respect to
S counts each point of § \ R with a multiplicity equal to the number of edges
of conv(R) whose supporting lines separate it from conv(R) itself. Figure 4.3
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Figure 4.3. Moment of order 1.

indicates the multiplicity of each point, and the first-order moment of the sample
is 16.

The moment theorem shows that, if the size of the sample is big enough, the
expected moment of order 1 is at most n — 7.

4.2.1 The sampling theorem

The sampling theorem yields an upper bound on the number of regions defined
and with at most & conflicts over a set S of n elements. This bound depends
on the expected number of regions defined and without conflict over a random
|n/k|-sample of S. The proof of this theorem relies on the simple idea that,
the fewer objects in conflict with a region, the more likely this region is to have
no conflict with a random sample R of S. The proof uses the two fundamental
lemmas below.

Lemma 4.2.1 Let S be a set of n objects and F' a region in conflict with j objects
of S and determined by i objects of S. If R is a r-sample of S, the probability
p;-,k(r) that F' be a region defined and with k conflicts over R is

i) (n—i-i
(1) (7=2d)
- .
()
Proof. Let R be a random r-sample of S. The region F of f}(S) belongs to
FL(R) if it is determined by i objects in R and conflicts with k objects in R. For
this to be the case, the i objects determining F' must be part of R. The &k objects

of R conflicting with F' must be chosen among the j objects of S that conflict
with F'. Finally, the r — ¢ — k remaining objects in R not in conflict with F' must

p;",k (r) =
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be chosen among the n — 7 — j objects in S that do not determine or conflict with
I O

We denote by pg-(r) the probability pé-’o(r) that a region F of F}(S) be defined
and without conflict over a random r-sample of S:

n—i—j
r—1
- .
T
Lemma 4.2.2 Let S be a set of n objects and R a random r-sample of S. The
ezpected number fi(r,S) of regions determined by i objects of R that conflict with

k objects of R is given by the formula
i) (n—i—i
k r—i—k

n
T
Proof. The expected number of regions in the set ﬂ(’R,) is the sum, over all the

regions determined by i objects of S, of the probability that this region belongs
to the set F}(R). This probability is given by the lemma 4.2.1 above. o

pj(r) =

fir,8) = |FUS)|
j=0

Theorem 4.2.3 (Sampling theorem) Let S be a set of n objects and k an
integer such that 2 < k < g5 Then

|F<k(S)| < 4(b + 1)°k° fo(|n/k] , S).

where b is an upper bound on the number of objects that determine a region,
|F<k(8)| is the number of regions defined and with at most k conflicts over S,
and fo(|n/k],S) is the expected number of regions defined and without conflict
over a random |n/k|-sample of S.

Proof. For each i, 1 < ¢ < b, we shall prove the following inequality bounding
the number of regions determined by i objects:

|FL(S)] < 4(b+ 1)K f5(In/K) , S).

Then the theorem can be easily proved by summing over all the values of i between
1 and b.
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Let k be an integer such that 2 < k£ < z#7 and R a random sample of S, of
size r = [n/k|. From lemma 4.2.2, we recall that the expected number fi(r,S)
of regions defined and without conflict over R is

n—i—j n—i—=k
r—1 . r—i
> |7 (S)] -

(r,8)= IPS)l(
e e ()

The remainder of this proof is a mere computation on factorials, which shows
that for each k such that 2 < k < z33, and r = |n/k],

n—i—k
( (T;S )24(b+11)iki'

T

Indeed,

( "(;'Z'S”k) - i!-):(n_;i)!( (f_i),!g);(n(—i_-)f)!-

We compute

(n—r)! (n—i-k)! n—r—k+1\*
1=k m—i = (n—z’—k+1)

n—n/k—k+1\*
(=)
(1-1/k)"
1/4 (if 2 < k),

(AVARAYS

and

~3
V)
=
I
oS,
N’
~3
|
—~

i i
nfk—1 _ 1 bk
> T 2 5 (1-5)

1 n
> —— (ith< 2
= Bo+1y (1fk—b+1)’

proving the inequality stated by the theorem. O
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Remark 1. The sampling theorem deals with the numbers |F<(S)| of regions
with at most k conflicts, for values of k between 2 and b_‘_il
For the case of regions without or with at most one conflict, however, it is

possible to prove the following bound
|Fo(S)] < 1F<1(S)] < [F<a(S)| < 4(b + 1)"2°fo((n/2], S),

valid whenever n > 2(b+ 1).
Moreover, for values of k close to n, there is always the trivial bound

[ F<k(S)| < |F(S)| = O(n?)

if, as in remark 4 of subsection 4.1.1, we suppose that each subset of size at most
b determines at most g regions, for a constant number ¢ that depends on the
interpretation of objects and regions.

Remark 2. The sampling theorem yields a deterministic combinatorial result
when an upper bound on f5(|n/k]|,S) can be derived. For instance, in chapter 14,
we will use an upper bound on the number of faces of a d-dimensional polytope
to yield, via the sampling theorem, an upper bound on the number of faces at
level at most k£ in an arrangement of hyperplanes.

The following corollary is very useful for analyzing the average performance of
randomized algorithms. It shows that the expected number of regions defined and
with one or two conflicts over a random r-sample of a set S is of the same order
of magnitude as the expected number of regions defined and without conflict over
such a sample.

Corollary 4.2.4 Let S be a set of n objects, with n > 2(b+ 1). For each integer
r such that n > r > 2(b+ 1), we have

fl(r78) /BfO(,_r/2J 38)

fa(r, S) Bfo(lr/2],S)

where f;j(r,S) is the expected number of regions defined and with j conflicts over
a random r-sample of S, and B is the real constant

8 = 4(b+1)°2".

<
<

Proof. Let R be a subset of S of size r, such that 2(b+ 1) < r. Applied to R,
remark 1 following theorem 4.2.3 yields

[F1(R)] < 4(b + 1)°2° fo(r/2] , R).

The first inequality is obtained by taking expectations on the two members of
this equation. Indeed, fo(|7/2],R) is the expected number of regions defined and
without conflict over a random |r/2]|-sample of R, and the expectation of this
expected number when R itself is a random r-sample of S is simply fo(|r/2],S).
The second inequality can be proved in much the same way. O
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4.2.2 The moment theorem

Let S be a set of n objects and R be a subset of S. The moment theorem bounds
the total number of conflicts between the objects of & and the regions defined
and without conflict over R.

Let k£ be a integer less than or equal to n. The moment of order k of R with
respect to S, denoted by mi(R,S), is the sum

mk(R,8) = Y ('S(,CF)'),

FeF(R)
where Fo(R) stands for the set of regions defined and without conflict over R,
and |S(F")| is the cardinality of the set S(F') of objects in S that conflict with a
region F'.
The moment of order 0, mo(R, S), is simply the number of regions defined and
without conflict over R:

mo(R,S) = |Fo(R)|.
The moment of order 1, m;(R,S), is the total number of conflicts between the
elements of S and the regions defined and without conflict over R:

mi(R,8)= 3 |S(F)|
FeFo(R)
The expectation of mg(R,S) for a random r-sample R of S is denoted by
mg(r,S). In particular, mo(r,S) = fo(r,S).

Lemma 4.2.5

me(r, S) = inzzmsn( ) witr

i=1 j=0

Proof. Recall that pg-(r) stands for the probability that a given region F' of
.7-';(8) be defined and without conflict over a random r-sample of S, whence

25 £ ({)so :

=1 j=0 peF](s)

Theorem 4.2.6 (Moment theorem) Let S be a set of n objects. The expec-
tation my(r,S) of the moment of order k of a random r-sample of S is related to
the expected number fr(r,S) of regions defined and with k conflicts over a random
r-sample of S by the relation

—r+ k) (r—b—k)!
(n—r1)! (r—20)! ~’

where each region is determined by at most b objects.

mi(r, 8) < fi(r, 8) "
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Proof. According to the previous lemma 4.2.5, and to lemma 4.2.1 which gives
the expression for the probability p’(r), we have

i) = 550 )(())

: J n—i-—j
- £5 0 Eif‘k} e

| AVERIE
(n(;it)’;)! (T(;S)f)! g;lﬂ(s)l ( k) E;}z_k )

is nothing else but the probability p;k(r) that a region F of F}(S) belong to
Fi(R), whence

n—r+k)!(r—>b—k)!

me(r,$) < il ) SR 22

Corollary 4.2.7 Let S be a set of n objects. There ezists a real constant v and
an integer rg, both independent of n, such that for each n > r > ry,

mi(r,8) < v——fol|r/2],S)

mar,) < 78S follr/2),8),

where my(r, S) is the expected number of the k-th moment of a random r-sample

of S, and fo(r,S) is the expected number of regions defined and without conflict
over a random r-sample of S.

Proof. For k = 1, the moment theorem yields

—r+1

mi(r,S8) < fi(r, S) _—
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and the upper bound is a consequence of corollary 4.2.4. The second inequality
can be proved very much the same way. O

4.3 Exercises

Exercise 4.1 (Backward analysis) In this exercise, regions are determined by at most
b objects of a set S. Let f;(r,S) be the expected number of regions defined and without
conflict over a random r-sample of S. Corollary 4.2.4 to the sampling theorem proves that
fi(r,8) = O(fo(r,S)). Backward analysis can be used to prove this without invoking the
sampling theorem. :

Let R be a subset of S of cardinality r, and fo(r—1,R) the expected number of regions
defined and without conflict over a random sample of R of size r — 1. Show that

folr=LR) < HF(R) + 2 |Fo(R)| (41)
folr—1R) 2 AR+ L IF(R)] (42)

From this, show that f;(r,S) = O(fo(r,S)). Similarly, show that fa(r,S) = O(fo(r, S).

Hint: Backward analysis consists in observing that a random (r —1)-sample R’ of R can
be obtained by removing one random object from R. Any region in Fo(R') is defined
over R and belongs either to Fp(R) or to F1(R). A region F that belongs to Fo(R)
determined by i objects is a region of Fo(R') if the removed object is not one of the 4
objects that determine F'; this happens with probability % A region F' that belongs to
F1(R) is a region of Fo(R') if the removed object is precisely the one that was removed
from R, which happens with probability 2. To show that fi(r,S) = O(fo(r,S)), it
suffices to take expectations in equation 4.2 over all r-samples of § and to assume that
fo(r,S) is a non-decreasing function of r.

Exercise 4.2 (The moment theorem, using backward analysis) Let R be a ran-
dom r-sample of a set S of n objects, and O a random object of S \ R. Show that the
expected number of regions defined and without conflict over R but conflicting with O
is O(4 fi(r +1,5)). From this, show that the expected value m,(r,S) of the moment

of order 1 with respect to S of a random r-sample is O(2377 fi(r +1,S)). From this,

deduce an alternative proof of the moment theorem by using the result of the previous
exercise or corollary 4.2.4 to the sampling theorem.

Hint: Note that R U {O} is a random (r + 1)-sample of S and that a region of Fo(R)
that conflicts with O is a region of F;(R U {O}) that conflicts with O.

Exercise 4.3 (An extension of the moment theorem) A function w is called con-
ver if it satisfies, for all «,y in R and all « in [0, 1],

w(az + (1 - a)y) = aw(®) + (1 - a)u(y).
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We are interested in regions determined by at most b objects of a set S of n objects. For
each subset R of S and any convex function w, we define:

- ¥ (),

FG}.()('R)

where Fy(R) is the set of regions defined and without conflict over R and |S(F)| is the
number of objects in S that conflict with F. Let wi(r,S) stand for the expected value
of wi(R) for a random r-sample of S. Show that

(n—r— k) (r —b—k)! fi(r,S)
wk(r, S) < fﬂ(r’ S) o ( (’I’L - 1")! (T - b)' fz(r’s)) .

Exercise 4.4 (Non-local subset of regions) We still work with the framework of ob-
jects, regions, and conflicts, each region being determined by at most b objects. In this
exercise, we are mostly interested, for a subset R of objects in S, in a subset Gg(R) of
regions defined and without conflict over R. The definition of Gy(R) is not necessarily
local, however: a region F of Fo(R) belongs to Go(R) depending on all the elements of
R, not only those in conflict with F or that determine F'. Nevertheless, suppose that the
subsets of the form Gy(R) satisfy the following property: If F is a region of Go(R), R’
a subset of R, and if R’ contains the elements that determine F, then F is a region of
Go(R).
Let wg(r,S) be the expected value of the sum

> sF)F
FEQO(R)

where |S(F)| is the number of objects of S in conflict with F. We are interested in
showing the moment theorem for the regions in Go(R), in other words that

nk
w(8) =0 (Ll ) )
where go(r, S) is the expected number of regions in Gy(R) for a random r-sample of S.
Hint: 1. Let p(r, F) be the probability that F be a region of Go(R) for a random r-sample

R of S. Show that, forallt <r <n,

rt (t—0b)!

PinF) s 4

o(t, F).

2. Let us propose an incremental algorithm to compute Go(S). The probability that a
region F appear in Go(R) precisely at step r is

b
2p(r, F).
—p(r, F)
The probability that it disappear from G3(R) at the next step r + 1 is at least

BE N, .
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Show that, for all r; < ro,

p(r1, F)+ 3 2p(r, ) Z S

ri+1

3. Using the previous inequality, show by induction on k that

r k
Vr /2 < 1o < £.8) < ~irl_go(r, S
r, 7‘/ Sroxr tzzro ’Ll)k( ) ) = ’Ykrrk gO(ra )

and that .

n
wk(r, S) < Yk r_kQ‘O(r’ S)a

where 7y, and ~y are constants depending only on k.

Exercise 4.5 (Tail estimates) Let b be the maximum number of objects that deter-
mine a single region. Suppose again that a set of at most b objects determine at most
g regions, g being a constant, or that the number of regions determined by a set S of n
objects is O (nb).

1. Let S be a set of n objects and R a random r-sample of S. Let a be a real constant
in |0, 1[. Let mo(a,r) denote the probability over all samples R that some region defined
and without conflict over R have at least [an]| conflicts with S§. Show that, for r big
enough,

mo(a, 1) = O (r®(1 — )7).

2. Show that for any constant A > b, the probability mo(Alogr/r,r) that some region
F, defined and without conflict over R, have at least Anlogr/r conflicts with S decreases
to 0 as r increases.

Exercise 4.6 (Extension of the previous tail estimates) We propose to generalize
the tail estimates given in exercise 4.5. Again, let b be the maximum number of objects
that determine a single region, and suppose that the number of regions determined by a
set S of n objects is O (n”).

Let S be a set of n objects, R a random r-sample of S, @ a real constant in |0, 1|,
and m a positive integer. Denote by m (c, ) the probability that there exists a region
F' defined over R with at most m conflicts over R, and at least [an]| conflicts over S.
Likewise, denote by 7} (a,r) the probability that there exists a region F defined over R
with at least m conflicts over R, and at most [an]| conflicts over S.

Show that if the size r of the sample is big enough while still smaller than 1/n/2, then

b m
if m < a(r —b), (o, r) = .(% Z ( ; ) (1 - a)r—iJ ,
§=0

b
if m > a(r —b), W,J,’L(a,r)=% Z ( ;)aj(l—a)r_j

jzm
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Then show that, if a(r) = Alogr/r and m(r) = logr/loglogr,

A, Tonr

) (a(r),r) = 0.

Exercise 4.7 (An upper bound on f3(S)) Consider the set F(S) of regions defined
over a set S, each region being determined by at most b objects. Let f;(S) be the number
of regions defined and having j conflicts with S, and fo(n) be the maximum of fy(S) over
all sets S of n objects. Suppose that there is a relation between the number of regions
defined and without conflict over & on one hand, and the number of regions defined over
S and conflicting with one element of S on the other. Suppose further that this relation
is of the type

cfo(8) < f1(S) +d(n) (4.3)

where c¢ is an integer constant and d(n) a known function of n. Let ¢t = b — c¢. Show then

that
fo(n)=0|nt |1+ Z dt(iz .
J=t+1]

In particular,

fo(n) = O(n?) if d(n) =O(nt) for t' < t,
fo(n) = O(n*logn) if d(n)=0(n'),
fo(n) = O(n) if d(n) = O(nY) for ' > t.

Hint: Combining equation 4.2, written for a random (n—1)-sample of S, and equation 4.3
yields

n_Tb-l_cfo(S) = n;bfo(s)‘i'%fo(s)
< P22 A(8)+ 3 (A(S) +d()
1

< fo(n—-1,8)+ ;d(”)-

Exercise 4.8 (Union of parallel hypercubes) Consider a set of parailel hypercubes
in ]Ed, that is, hypercubes whose sides are parallel to the axes.
Show that the union of n hypercubes has at most O(n/%21) faces for each d > 1.

Furthermore, show that the complexity of the union of n hypercubes of equal size is
O(n'?/2]) when d > 2 and remains O(n) in dimension 1.

Hint: Each vertex of the union belongs to a bounded number of faces of the union. Hence
it suffices to bound the number of vertices of the union to bound the total complexity.

The proof works by induction on d. The proof is trivial in dimension 1, and easy in
dimension 2.

In dimension d, each cube has 2d pairwise parallel facets. Let us denote by FJ.+(C')

the facet of the cube C that is perpendicular to the z;-axis with maximal j-coordinate,
and by F; (C) the facet of the cube C' that is perpendicular to the z;-axis with minimal
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j-coordinate. Let C be a set of axis-parallel cubes in E¢, and denote by U (C) the union of
these cubes and LA(C) their arrangement, that is, the decomposition of E® induced by the
cubes (see part IV for an introduction to arrangements). Each vertex of U(C) or of A(C)
is at the intersection of d facets of cubes, one perpendicular to each axis direction. Such
a vertex P is denoted by (C5',C3?,...,C3) if at the intersection of facets Fjef (Cj), for
j=1,...,d and ¢ = + or —. The vertex P is called outer if it belongs to a (d — 2)-face
of one of the cubes (then not all the cubes C; are distinct). It is called an inner vertex if
it is at the intersection of d facets of pairwise distinct cubes. A vertex of A(C) is at level
k if it belongs to the interior of k cubes of C. The vertices of the union are precisely the
vertices at level 0 in the arrangement A(C). Let wg(C) be the number of inner vertices of
A(C) at level k, and vg(C) be the number of outer vertices at level k, and v¢(n,d) (resp.
wi(n, d)) the maximum of vg(C) (resp. of wg(C)) over all possible sets C of n axis-parallel
hypercubes in E®.

1. The maximum number vo(n,d) of outer vertices of the union is O(n/%/21) (and
O(nl%2) when the cubes have same size). Indeed, any outer vertex of U(C) belongs to
a (d — 2)-face H of one of the cubes in C and is a vertex (either outer or inner) of the
union of all (d — 2)-cubes C Naff (H), where gff (H) is the affine hull of H. Consequently,

vg(n,d) < 2nd(d — 1)(do(n ~ 1,d — 2) + Wo(n — 1,d — 2)),

where 9g(n —1,d — 2) and wo(n — 1,d — 2) respectively stand for the maximum numbers
of outer or inner vertices in the union of n — 1 cubes in a (d — 2)-dimensional space lying
inside a given (d — 2)-cube.

2. Applying the sampling theorem (theorem 4.2.3) and its corollary 4.2.4, we derive a
similar bound on the maximum number v;(n,d) of outer vertices at level 1.

3. To count the number of inner vertices, we use the following charging scheme. For
each vertex P = (C}*,C32,...,C5") of U(C), and each direction j = 1,...d, slide along
the edge of A(C) that lies inside the cube C; (this edge is ), ; F;*(C})) until the other
vertex P’ of this edge is reached.

If P’ belongs to the facet F j_e" (C;) of cube C;, we do not charge anything. This case
cannot happen unless the cubes have different side lengths and C; is the smallest of the
cubes intersecting at P.

If P’ belongs to a (d — 2)-face of one of the cubes C; (i # j) intersecting at P, P’ is an
outer vertex at level 1, and is charged one unit for P. Note that P’ cannot be charged
more than twice for this situation.

If P’ belongs to another cube C’ distinct from all the C; intersecting at P, then P’ is
an inner vertex at level 1, and is charged one unit for P. Any inner vertex P’ of this type
may be charged up to d times for this situation. However, when it is charged more than
once, say m times, we may redistribute the extra m — 1 charges on the outer vertices at
level 0 or 1, and these vertices will only be charged once in this fashion.

In the case of cubes with different sizes, the induction is
(d — Dwo(C) < wi(C) + 3v1(C) + v (C).
In the case of cubes with identical sizes, we obtain
dwo(C) < wi(C) + 3v1(C) + vo(C).

It suffices to apply exercise 4.7 to conclude.
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4.4 Bibliographical notes

Randomized methods revolutionized computational geometry. Most of the material in
this chapter is taken from the ground-breaking work of Clarkson and Shor [71]. The
randomized incremental algorithms in the next two chapters are concrete applications
of the formalism developed in this chapter, and we invite the reader to consult the
bibliographical notes of these chapters for more references. Clarkson and Shor proved the
tail estimates and their extension as stated in exercises 4.5 and 4.6, which are the corner
stone on which all analyses of randomized divide-and-conquer algorithms rely. In their
article, they also prove the extension to the moment theorem proposed in exercise 4.3.
This extension will prove useful in exercise 5.8 for the analysis of an algorithm that
triangulates a simple polygon, due to Clarkson, Cole, and Tarjan [69].

The extension of the moment theorem to a non-local set of regions defined and with-
out conflict over a random sample (exercise 4.4) is due to de Berg, Dobrindt, and
Schwarzkopf [76]. The result stated in exercise 4.4 will be used in chapter 15 to an-
alyze the randomized incremental algorithm that builds a single cell in an arrangement
of line segments.

The backward analysis method proposed in exercises 4.1 and 4.2 was used by Chew [59]
to analyze an algorithm that builds the Voronoi diagram of a convex polygon (see ex-
ercise 19.4). The method was used later in a systematic fashion by Seidel [203] and
Devillers [80].

The method used in exercise 4.7 to obtain an upper bound on the expected number
of regions defined and without conflict over a set of objects is due to Tagansky [212].
The analysis of the complexity of the union of parallel hypercubes in d dimensions (see
exercise 4.8) given by Boissonnat, Sharir, Tagansky, and Yvinec [34] illustrates the power
of this method.



