Chapter 6

Dynamic randomized
algorithms

The geometric problems encountered in this chapter are again stated in the ab-
stract framework of objects, regions, and conflicts introduced in chapter 4. A
dynamic algorithm maintains the set of regions defined and without conflict over
the current set of objects, when the objects can be removed from the current set
as well as added. In contrast, on-line algorithms that support insertions but not
deletions are sometimes called semi-dynamic.

Throughout this chapter, we denote by S the current set of objects and use the
notation introduced in the previous two chapters to denote the different subsets
of regions defined over S. In particular, Fo(S) stands for the set of regions defined
and without conflict over §. To design a dynamic algorithm that maintains the
set Fo(S) is a much more delicate problem than its static counterpart. In the
previous chapter, we have shown how randomized incremental methods provide
simple solutions to static problems. In addition, the influence graph techniques
naturally lead to the design of semi-dynamic algorithms. In this chapter, we
propose to show how the combined use of both conflict and influence graphs can
yield fully dynamic algorithms.

The general idea behind our approach is to maintain a data structure that

meets the following two requirements:
o It allows conflicts to be detected between any object and the regions defined

and without conflict over the current subset.
e After deleting an object, the structure is identical to what it would have

been, had the deleted object never been inserted.

Such a structure is called an augmented influence graph, and can be imple-
mented using an influence graph together with a conflict graph between the re-
gions stored in the influence graph and the current set of objects. In some cases,
we might be able to do without the conflict graph.

96 Chapter 6. Dynamic randomized algorithms

In section 6.2, we describe the augmented influence graph and how to perform
insertions and deletions. The randomized analysis of these operations is given in
section 6.3. This analysis assumes a probabilistic model which is made precise
and unambiguous in section 6.1. The general method is used in section 6.4 to
design a dynamic algorithm that builds the vertical decomposition of a set of
segments in the plane.

This chapter also uses the terminology and notation introduced in the previous
two chapters. To ease the reading process, some definitions are recalled in the
text or in the footnotes.

6.1 The probabilistic model

The current set of objects, denoted by S, is the result of a sequence of insertions
and deletions. Due to the second requirement which we stated earlier, the data
structure does not keep track of the deleted objects. Consequently, at any given
time, the data structure depends only on S and on the order in which the ob-
jects in § were introduced. In fact, an object stored in the data structure may
have been inserted and removed several times, yet the current state of the data
structure only keeps track of the last insertion.

At any given time, the data structure only depends on the chronological se-
quence ¥ = {01, 04, ...,0,} which is the sequence of objects in § in the order
of their last insertion.

The randomized analysis of a dynamic algorithm assumes that:

e If the last operation is an insertion, each object in the current set S is
equally likely to have been inserted in this operation.

e If the last operation is a deletion, each object present prior to the deletion
is equally likely to be deleted in this operation.

It follows from these two assumptions that the chronological sequence X is
random, and that every permutation of the objects in S is equally likely to occur
in ¥. Let the current set of object S be of size n, and let ¢ be an integer
in {1,...,n}. Each object in S is the object O; of rank i in ¥ with uniform
probability 1/n. Moreover, in a deletion, the object O; of rank ¢ in X is deleted
with uniform probability 1/n.

We let S; be the subset {O1, Oq, ..., O;} of the first ¢ objects in the chrono-
logical sequence. The probabilistic model implies that for i, 1 < i < n, §; is a
random i-sample! of S and, for each pair (i,j)such that 1 <i<j<m,S;isa

We may recall that a random i-sample is a random subset of size i of S. Its elements are

chosen in a way that makes all the (?) possible subsets of size i of 8 equally likely.

6.2. The augmented influence graph 97

random i-sample of S;.

6.2 The augmented influence graph

The augmented influence graph obtained after a sequence of insertions and dele-
tions that results in a set S, is determined only by the chronological sequence
¥ of the objects in S and is denoted Za(X). The augmented influence graph
Za(X) is connected, directed, and acyclic. It has the same nodes and arcs as the
graph built by an on-line algorithm which inserts the objects of the sequence X
in the order of ¥. There is a node in the graph for each region that belongs to

1 Fo(Si), where Fo(S;) denotes the set of regions defined and without conflict
over S;. Let us recall that a region is characterized by two subsets of objects: the
subset of objects with which it conflicts, called the influence domain of the region,
and the subset of objects with bounded size that determine the region. In the
following, we call each object that belongs to this second subset a determinant
of the region. We call creator of a region the object of highest chronological rank
among the determinants of the region. As in the preceding chapter, we use the
terminology of trees to describe the structure of the augmented influence graph,
and often identify a node with the region that is stored therein. This lets us speak
for instance of the parent or children of a region, or of the influence domain of a
node. The arcs of the influence graph maintain the inclusion property that the
influence domain of a node is a subset of the union of the influence domains of
its parents. For dynamic algorithms, we demand that arcs of the augmented in-
fluence graph also ensure a second inclusion property stating that, apart from its
creator, the set of determinants of a region is contained in the set of determinants
of its parent regions.

In addition to the usual information stored in the influence graph, the aug-
mented influence graph stores a conflict graph between the objects in the current
set S and the regions stored in the nodes of the influence graph. This conflict
graph is represented as in the preceding chapter by a system of interconnected
lists: To each region F stored at a node of the influence graph corresponds a list
L'(F) of objects of & with which it conflicts. To each object O in the current
set S corresponds a list L{O) of regions stored in the entire influence graph that
conflict with O. There is a bidirectional pointer between the entry corresponding
to a region F' in the list L(O) of an object O and the entry corresponding to O
in the list L'(F).

Inserting an object

Inserting an object Oy, into a structure built for a set S,,; is very similar to the
operation of inserting an object in an on-line algorithm that uses an influence

98 Chapter 6. Dynamic randomized algorithms

graph. The only difference is that, in addition to the insertion into the influence
graph, we must also take care of updating the conflict lists. This can be done in
two phases: a locating phase, and an updating phase.

Locating. The algorithm searches for all the nodes in the influence graph of
Za(X) that conflict with O,. Each time a conflict is detected, we add a conflict
arc to the conflict graph, add O, to the conflict list of the region that conflicts
with it, and add this region to the list L(Oy).

Updating. A node of the influence graph is created for each region in Fo(S,)
determined by a set of objects that contains O,. This node is also linked to
parent nodes so that the two inclusion properties hold.

We may recall that a region in Fo(Sy) is said to be created by O, if it is
determined by a set of objects that contains O,. Similarly, a region of Fo(Sp—1)
is said to be killed by O, if it conflicts with O,,. More generally, a region stored
in a node of the influence graph Za(X) has a creator in X, and a killer if it is not
a leaf. The creator of F' is, among all the objects that determine F', the one that
has the highest rank in ¥. The killer of F' is, among all the objects in ¥ that
conflict with F, the one with the lowest chronological rank.

For the rest of this chapter, we assume that the augmented influence graph
satisfies the update condition 5.3.3. In particular, a node of the graph that stores
a region created by O, is linked only to nodes storing regions killed by O,.

Deleting an object

To simplify the discussion, assume that the current set S has n objects, and that
the current data structure is the augmented influence graph Za(X) corresponding
to the chronological sequence ¥ = {Oy,...,0,}. The object to be deleted is
Oy, the object that has chronological rank k. The algorithm must modify the
augmented influence graph to look as if O had never been inserted into X.
The augmented graph must therefore correspond to the chronological sequence
¥ = {01, eeey Or—1, Ok, - - .On}.

For any integer I, k <! < n, let us denote by S} the subset S; \ {Or} of S. In
particular, observe that S}, = Sk_1.

In what follows, an object is called a determinant of a region if it belongs to

the set of objects that determine that region. The symmetric difference between
the nodes of Za(X) and those of Za(X¥') can be described as follows.

1. The nodes of Za(X) that do not belong to Za(X') are determined by a set
of objects that contain Of. Therefore O, is a determinant of those regions,

and we say that such nodes (and the corresponding regions) are destroyed
when Oy is deleted.

2. The influence graph Za(X') has a node that does not belong to Za(X) for

6.2. The augmented influence graph 99

each region in [J,_, +1,..nF0(1) that conflicts with Ok. Let us say that
such a node is new when Oy, is deleted, and so is its corresponding region.
A new region has a creator and, occasionally, a killer in the sequence ¥'. If
the region belongs to Fo(S]), conflicts with Ok, and is determined by a set
of objects that contain Oy, then it is a new region after Oy, is deleted, and
its creator is Oy,

Nodes that play a particular role when Oy is deleted include of course the
new nodes as well as the destroyed ones, but the nodes killed by Oy also have
a special part to play. The nodes killed by O should not be mistaken for the
nodes destroyed when Oy is deleted. Nodes killed by Oy correspond to regions
of Fo(Sk-1) that conflict with Ok, whereas nodes destroyed when Oy is deleted
correspond to regions that admit Ok as a determinant. The latter nodes disappear
from the whole data structure when Oy is deleted. The former nodes are killed
when Oy is inserted but remain in the data structure (occasionally becoming
internal nodes), and they still remain after Oy is deleted.

Upon a deletion, the arcs in the influence graph Za(X) that are incident to
the nodes destroyed by Oy disappear and the graph Za(X') has arcs incident to
the new nodes. In particular, new nodes must be linked to some parents (which
are not necessarily new nodes). Moreover, a few nodes of Za(X) that are not
destroyed witness the destruction of some of their parents. Let us call these
nodes unhooked. They must be rehooked to other parents.

Again, deletions can be carried out in two phases: a locating phase, and a
rebuilding phase.

Locating. The algorithm must identify which nodes of the influence graph
Za(X) are in conflict with O, which nodes have to be destroyed, and which are
unhooked. Owing to both inclusion properties, this can be done by a traversal of
the influence graph. This time, however, we not only visit the nodes that conflict
with O, but also those which admit Oy as a determinant. The destroyed or
unhooked nodes are inserted into a dictionary which will be looked up during the
rebuilding phase.

Rebuilding. The first thing to do is to effectively remove all the destroyed
nodes. Those nodes can be retrieved from the dictionary, and all the incident
arcs in the graph are also removed from the graph. The conflict lists of the nodes
which conflict with Oy are also updated accordingly. We shall not detail these
low-level operations any further, as they should not raise any problems. Next,
we must create the new nodes, as well as their conflict lists; we must also hook
these new nodes and rehook the nodes that were previously unhooked. The detail
of these operations depends on the nature of the specific problem in hand. The
general design is always the same, however: the algorithm reinserts one by one,
and in chronological order, all the objects O; whose rank [is higher than k£ and
that are creators of at least one new or unhooked region. To reinsert an object

100 Chapter 6. Dynamic randomized algorithms

involves creating a node for each new region created by O;, hooking this node
into the influence graph, setting up its conflict list, and finally rehooking all the
unhooked nodes created by O;.

To characterize the objects O; that must be reinserted during the deletion of
Oy, we must explain what critical regions and the critical zone are. For each
1 > k, we call critical those regions in Fo(S;_;) that conflict with O. We call
critical zone, and denote by Z;_1, the set of those regions.

Lemma 6.2.1 Any object O; of chronological rank | > k that is the creator of
a new or unhooked node when Oy ts deleted conflicts with at least one critical
Tegion in 2y_1.

Proof. If O; is the creator of a new node, then there is a region F in Fo(S))
that is determined by O; and conflicts with O. In the influence graph Za(X'),
this region is linked to parents which, according to condition 5.3.3, are associated
with regions in F((S)_;) which conflict with O;. Still according to this condition,
at least one of these nodes conflicts with O, which proves the existence of a
region G in Fo(S)_;) that conflicts with both O; and O.

If Oy is the creator of a unhooked node, then there is a region F in Fo(S)) N
Fo(S;) whose determinants include O;. The region F is linked in the influence
graph Za(X') to parents, at least one of which is either new or killed by Oy
(otherwise the region does not need to be rehooked). Update condition 5.3.3

assures us that this parent conflicts with O;, which proves that there is a region
G in Fo(S;_,) that conflicts both with O; and Ok. O

For each ! > k, we must thus determine whether there is a critical region in
2Z;_1 that conflicts with O;. If so, then O; is reinserted, and we must find all the
critical regions that conflict with ;. Dynamic algorithms are efficient mostly
when reinserting O; involves traversing only a local portion of the influence graph
that contains all the critical regions which conflict with O;.

Before starting the rebuilding phase, the critical zone is initialized with those
regions killed by O. At each subsequent reinsertion, the critical zone changes.
To determine the next object that has to be reinserted and the critical regions
that conflict with this object, we maintain in a priority queue Q the set of killers,
according to the sequence X', of current critical regions. Killers are ordered within
Q by their chronological rank, and each one points to a list of the critical regions
that it kills.

The priority queue Q is first initialized with those regions killed by Of. For
each critical region F in 2k, we identify its killer in ¥’ as the object, other
than Oy, with the lowest rank in the list L'(F).

At each step of the rebuilding process, the object with the smallest chronological
rank O; is extracted from ©Q, and we also get all the critical regions that conflict

6.3. Randomized analysis of dynamic algorithms 101

with O;. The object O; is then reinserted, and the details of this operation depend
of course on the problem in hand. The main obstacle is that we might have to
change more than the critical zone of the influence graph. Indeed, the new regions
created by O; always have some critical parents, even though they may also have
non-critical parents. Moreover, parents of an unhooked region are new, but the
unhooked region itself is not. To correctly set up the arcs in the influence graph
that are incident to new nodes, the algorithm must find in Za(X) the unhooked
nodes and the non-critical parents of the new nodes. At this phase, the dictionary
set up in the locating phase is used. After reinserting Oy, the priority queue Q is
updated as follows: the regions in Z;_; that conflict with O; are not critical any
more; however, any new region created by O; belongs to Z;. Then for each of
these regions F, the killer of F' in 3 is identified as the object in L'(F) with the
smallest chronological rank. This object is then searched for in @ and inserted
there if it is not found. Then F'is added to the list of regions killed by O;.

6.3 Randomized analysis of dynamic algorithms

The randomized analysis of the augmented influence graph and the insertion and
deletion operations are based on the probabilistic model described in section 6.1.
The first three lemmas in this paragraph analyze the expected number of elemen-
tary changes to be performed upon a deletion.

Lemma 6.3.1 Upon deleting an object, the number of nodes that are destroyed,
new, or unhooked is, on the average,

1 <~ foll,S
O(ﬁgf()(l)),

where, as usual, fo(l,S) stands for the number of regions defined and without
conflict over a random sample of size | from S.

Proof. We bound the number of destroyed, new, and unhooked nodes separately.
1. The number of destroyed nodes. A node in Za(X) corresponding to a
region F'in .7:;(8) is destroyed during a deletion if the object deleted is one of the
i objects that determine the region F. Let F' be a region in .7-";(8) Given that F
corresponds to a node in the influence graph built for S, this node is destroyed
during a deletion with a conditional probability i/n < b/n. From theorem 5.3.2,

we know that the expected number of nodes in the influence graph is

2. foll, S
0 (; fO(l)) ,

102 Chapter 6. Dynamic randomized algorithms

so the number of nodes destroyed when deleting an object is, on the average,

O(%ﬁ;fo(zl,&)'

2. The number of new nodes. The regions that correspond to the new nodes
in the influence graph when Oy is deleted are exactly the regions created by Oy,
for some [such that k£ <! < n, that belong to F(S}) and conflict with O. Let
F be a region of P(S) This region F' belongs to F(S]) with the probability
pJ(l — 1) that was given in subsection 5.2.2. Assuming this, F' is created by O
with conditional probability ¢/({ — 1), and F conflicts with O with conditional
probability j/(n — l + 1). Therefore, for a given k, the number of new nodes in
the influence graph upon the deletion O is, on the average (using corollary 4.2.7
to the moment theorem),

b n n ' - ; . n—llm1 l’,S
ZZ 2 17 Bt =1) 7= n—jz+1 - O(Zl'(vf—l’;)
=1 j=11l=k+1

_ (Z fo(l¥ /2J 8))

Averaging over all ranks k, the number of new nodes in the influence graph after

a deletion is

k 1=

3. The number of unhooked nodes. Unhooked nodes are the non-destroyed
children of destroyed nodes. If condition 5.3.3 is satisfied, the number of children
of each node in the augmented influence graph is bounded by a constant. It
follows that the number of unhooked nodes is at most proportional to the number
of destroyed nodes. O

The update condition 5.3.3 assumes that the number of children of a node
is bounded by a constant. However, the number of parents of a node is not
necessarily bounded by a constant and the following lemma is useful to bound
the number of arcs in the influence graph that are removed or added during a
deletion.

Lemma 6.3.2 The number of arcs in the influence graph that are removed or
added during a deletion is, on the average,

122 /0,8
0 (H; fO(l)) .

6.3. Randomized analysis of dynamic algorithms 103

Proof. The simplest proof of this lemma involves the notion of biregion encoun-
tered in exercise 5.7. A biregion defined over a set of objects S is a pair of regions
defined over S which can possibly be related as parent and child in the influence
graph, for an appropriate permutation of S. A biregion is determined by at most
2b objects, and the notion of conflict between objects and regions can be extended
to biregions: an object conflicts with a biregion if it is not a determinant of any
of the two regions but conflicts with at least one of the two regions. Biregions
obey statistical laws similar to those obeyed by regions. In particular, a biregion
determined by i objects of & which conflicts with j objects of S is a biregion
defined and without conflict over a random I-sample of &, with the probability
p§~ (1) given by lemma 4.2.1. A biregion defined and without conflict over a subset
S; of § corresponds to an arc in the influence graph whenever the objects that
determine the parent region are inserted before those that determine the child
region and at the same time conflict with the parent region. This only happens
with a probability « € [0, 1] (which depends on the number of objects determin-
ing the parent and the child, and the number of objects that at the same time
determine the child and conflict with the parent).

A biregion determined by i objects in & and conflicting with j objects in &
corresponds to an arc in the influence graph Za(X) that was created by O, with
a probability smaller than } p}(l) (see also exercise 5.7); this arc, created by O,
conflicts with Oy with a probability smaller than
- —— pi(1).

I no1 Pl

A computation similar to that in the proof of lemma 6.3.1 shows that the
expected number of arcs in the influence graph that are created or removed
during a deletion (which are those adjacent in the influence graph to new nodes

or to destroyed nodes) is
15 foll,S)
(35 22).

where ffo(l,S) is the expected number of biregions defined and without conflict
over a random [-sample of S. It remains to show that ffy(l,S) is proportional to
fo(i,8). Let S; be a subset of size [of S. The parent region in a biregion that
is defined and without conflict over §; is a region defined over S; that conflicts
with exactly one object in &, and is therefore a region in F7(S;). Conversely,
if the update condition 5.3.3 is true, every region in F1(S;) is the parent in a
bounded number of biregions defined and without conflict over S;. It follows that
[fo(l,S) is within a constant factor of the expectation f;(/,S) of the number of
regions defined and conflicting with one element over a random l-sample. From
corollary 4.2.4 to the sampling theorem, this expected number is O(fy(l,S)). O

104 Chapter 6. Dynamic randomized algorithms

Lemma 6.3.3 The total size of all the conflict lists attached to the nodes that
are new or destroyed when an object is deleted is, on the average,

0 (Zn: fO(;g’S)) .

=1

Proof.
1. Conflict lists of destroyed nodes. A region F' of f;(S) corresponds to a
node of the influence graph Za(X) with probability

> pi(l);
=1

as implied by lemma 5.2.2. The conflict list attached to this node has length 7
and this node is destroyed during the deletion of an object with probability ¢/n.
The total size of the conflict lists attached to destroyed nodes is thus

n b n n
S SIAES B L = o(%zm;(llﬁ)

=1 i=1 j=1 =1

oigrslh)

ofgie)
=1

as follows from corollary 4.2.7 to the moment theorem.

2. Conflict lists attached to new nodes. A region F of .7-"(8) is a new region
created by O; when Oy is deleted, if it is a region of fo(Sl) determined by O;
that conflicts with Og. The conflict list attached to the new node corresponding
to F' has 7 — 1 elements. The total size of the conflict lists attached to new nodes
when deleting Oy, is thus, on the average,

J .
ZZZ'PS” pjl_]')(—1) (n—l+1)('7_1)'

i=1 j=11=k+1

Applying corollary 4.2.7, this size is

o() —';’g;(ﬁf))) _0 (2(n_1) folls],9) 8))

=k I=k

Averaging over all ranks of k&, the above sum becomes

(g)-oghe) -

k=1 I=k

6.3. Randomized analysis of dynamic algorithms 105

Lastly, setting up the priority queue Q of killers of critical regions involves the
regions of the influence graph Za(X) that are killed by Ok. The conflict lists of
these regions are traversed in order to set up the conflict lists of the new children
of these nodes. The following lemma is therefore needed in order to fully analyze
dynamic algorithms.

Lemma 6.3.4 The number of nodes in the influence graph Ta(X) that are killed
by a random object in S is, on the average,

1 & fo(l,S)
o(23;442).
=1
The total size of the conflict lists attached to the nodes killed by a random object

18, on the average,
(Z fo(l S))

Proof. A node in Za(Z) that is killed by an object Oy of rank k corresponds to
a region in Fo(Sk-1) that conflicts with Ok. A region F' in F}(S) is a region in
Fo(Sk—1) that conflicts with Oy with probability

Pk =1 =T

Hence, the average number of nodes in Za(X) killed by a random object of S is

ey S ae-n it - o(iX 5k

k=2 i=1 j=1 k=2
B 1 < folk,S)

as can be deduced from corollary 4.2.7 to the moment theorem.

The total size of the conflict lists attached to nodes killed by a random object
is, on the average,

—ZZZIP(SM Sy oy - o(%z%if))

k=2 i=1 j=1 k=2

_ O(ZW)

k=1

- (Zﬁ’(ls). O

106 Chapter 6. Dynamic randomized algorithms

The detailed operations required to insert or delete an object in an augmented
influence graph depend upon the problem under consideration. In particular,
deletions demand a number of operations (insertions, deletions, or queries) on a
dictionary of nodes, or even several dictionaries. To be able to present a general
analysis, we introduce here an update condition for dynamic algorithms that use
an augmented influence graph. This condition is similar to those introduced in
the previous chapter to analyze incremental algorithms, namely condition 5.2.1
for algorithms using a conflict graph and condition 5.3.3 for algorithms using an
influence graph. The condition we introduce here is a reasonable one, which will
be fulfilled by all the dynamic algorithms described in this book.

Update condition 6.3.5 (for augmented influence graphs) A dynamic al-
gorithm that uses an augmented influence graph satisfies the update condition
when:

1. The augmented influence graph salisfies the update condition 5.2.1 for algo-
rithms using an influence graph.

2. During a deletion:

a. The number of operations on a dictionary of nodes (insertions, deletions,
or queries) is at most proportional to the total number of nodes killed (by
the deleted object), destroyed, new, or unhooked.

b. The conflict lists of the new nodes are initialized using a time proportional
to the total size of the conflict lists of the nodes killed (by the deleted object),
destroyed, and new.

c. All the operations performed to update the augmented influence graph that
do not pertain to dictionaries, conflict lists, or the priority queue Q, are
elementary and their number is proportional to the total number of destroyed
or new nodes, and of arcs incident to these nodes.

The complexity of a deletion depends partly on the data structures used to
implement the dictionaries and the priority queue @ of the killers of critical
regions. These data structures store a set of elements that belong to a finite,
totally ordered universe, whose cardinality is bounded by a polynomial in the
number n of current objects. Therefore, we can use the data structures described
in section 2.3, or more simply we may use a standard balanced binary tree. In
order to take all these cases into account, the analysis given below introduces two
parameters. The first parameter, ¢, is the complexity of a query, insertion, or
deletion performed on a dictionary of size O(n°), where c is some constant. The
second parameter, t', is the complexity of a query, insertion, or deletion performed
on a priority queue of size O(n). Parameter ¢t is O(logn) if a balanced tree is
used, and O(1) if the perfect dynamic hashing method of section 2.3 is used.

6.3. Randomized analysis of dynamic algorithms 107

Parameter ¢’ is O(log n) if we use a balanced binary tree, but it is O(loglog n)
if we use a stratified tree along with perfect dynamic hashing (see section 2.3).
Moreover, as we will see further on, if fo(l,S) grows at least quadratically, then
implementing Q with a simple array of size n will suffice, and ¢ can be ignored
in the analysis.

Theorem 6.3.6 This theorem details the performances of a dynamic algorithm
that uses an augmented influence graph and satisfies the update condition 6.3.5.
Let S be the current set of objects, and n the size of S.

1. The data structure requires an average storage of
n
fO(laS)
=1
2. Adding an object can be performed in expected time
n
fO(lv S)
0 (Z ol B
1:=1
3. Deleting an object can be performed in expected time
0 (min (n, £ 3 RS} , ¢ PELCTIN 3 folh$)
n I=1 l e l I=1 l2 ‘

As always, fo(l,S) is the number of regions defined and without conflict over a
random l-sample of S, t is the complexity of any operation on a dictionary, and
t' is the complezity of an operation on the priority queue Q.

Proof.

1. The storage needed by the augmented influence graph Za(X) is proportional
to the total size of the conflict lists attached to the nodes of Za(X). Each element
in one of these conflict lists corresponds to a conflict detected by an on-line
algorithm processing the objects in & in the chronological order of the sequence
Y. The expected number of conflicts, for a random permutation of X, is thus
given by theorem 5.2.3 which analyzes the complexity of incremental algorithms
that use a conflict graph.

2. The randomized analysis of an insertion into the augmented conflict graph
is identical to that of the incremental step in an on-line algorithm that uses
an influence graph. Indeed, the two algorithms only differ in that one updates
conflict lists. Each conflict between the inserted object and a node in the current

108 Chapter 6. Dynamic randomized algorithms

graph is detected by both algorithms. In the dynamic algorithm, detecting such
a conflict implies adding the inserted object into the conflict list of the conflicting
node, which can be carried out in constant time. The expected complexity of an
insertion is thus given by theorem 5.3.4.

3. Let us now analyze the average complexity of deleting an object, say O.
When locating Oy in the augmented influence graph, the nodes that are visited
are exactly the destroyed nodes, and their children, and the nodes that conflict
with Q. Since every node has a bounded number of children, the cost of the
traversal is proportional to the number of nodes destroyed or conflicting with
Og. The number of nodes in the influence graph that conflict with Oy, is, on the
average over all possible sequences X,

k-1 l
fo(ls],S)
o329},
=1
which we know from the proof of theorem 5.3.4. Averaging over the rank of the

deleted object, we get
n
fo(l,5)
o(£4)
=1

From lemma 6.3.1, the latter expression is also a bound on the expected number
of nodes destroyed and thus on the global cost of traversing the influence graph.

If the update condition 6.3.5 is realized, lemmas 6.3.3 and 6.3.4 show that the
conflict lists of the new regions can be set up in time

5 (Z fa(llQ,S)) |
=1
Lemma 6.3.1 and the update condition 6.3.5 (2a) assert that the term
o (3 3 fo(l,8>)
n & l

accounts for the average complexity of all the operations performed on the dic-
tionaries of nodes.

Since t is necessarily {2(1), lemmas 6.3.1 and 6.3.2, together with condition 6.3.5
(2c), assert that the former term also accounts for all the operations that update
the augmented influence graph, not counting those on the conflict lists or the
priority queue.

It remains to analyze the management of the priority queue Q of critical region
killers. The number of insertions and queries in the priority queue is proportional
to the total number of critical regions encountered during the rebuilding phase.

6.3. Randomized analysis of dynamic algorithms 109

These regions are either killed by the deleted object, or they are new regions.
Their average number is thus

1< foll,S
O('ﬁ;ﬁ)(l))’

as asserted by lemmas 6.3.1 and 6.3.4. The average number of minimum queries
to be performed on the queue Q is

, 1 < fo(l,S)
O(mm(n,zg——l)),

since the number of objects to be reinserted is bounded from above by n on the one
hand, and by the number of unhooked or new nodes (estimated by theorem 6.3.1)
on the other hand. O

Consequently,

e If fo(l,S) grows slower than quadratically (with respect to), we use a
hierarchical structure for the priority queue, characterized by a parameter ¢’
which bounds the complexity of any operation on this structure (insertion,
membership or minimum query). Managing the queue has therefore the

associated expected cost
t' o fo(1,S)
0 (?{ I};{ =~

e If on the contrary, fo(l,S) grows at least quadratically, we use for @ a
simple array of size n. This allows insertions and deletions to be performed
into the queue in constant time. The cost of finding the minima during the
whole rebuilding phase is then O(n), and managing the queue has in this
case the associated expected cost

1 > fU(l,S)
O(n+5;—l)

e When fo(l,S) is O(l), the expected number of destroyed or new nodes
visited during a deletion is O(1). Updating the conflict lists costs O(log n)
anyway. Both the priority queue and the dictionaries can be implemented
simply by balanced binary trees (¢ = ¢’ = logn) to yield a randomized
complexity of O(logn) for a deletion.

110 Chapter 6. Dynamic randomazed algorithms

6.4 Dynamic decomposition of a set of line segments

The vertical decomposition of a set of line segments in the plane is a structure
defined in section 3.3. It can be built using a conflict graph by a static incremen-
tal algorithm, as explained in subsection 5.2.2, or by a semi-dynamic incremental
algorithm using an influence graph, as detailed in subsection 5.3.2. By combin-
ing both structures using the general method explained in section 6.2, we can
dynamically maintain the vertical decomposition of the segments under insertion
or deletion of a segment. The algorithm described here is a generalization of the
decomposition algorithms given in subsections 5.2.2 and 5.3.2. It is advisable to
thoroughly understand both these algorithms before reading further.

Let us first recall that, for this problem, the objects are segments and the
regions defined over a set S of segments are the trapezoids appearing in decom-
positions of subsets of S. A trapezoid is determined by at most four segments.
A segment conflicts with a trapezoid if it intersects the interior of the trapezoid.

Let S be the current set of segments and let ¥ = {01,0;,...,0,} be the
chronological sequence of segments in §. We may also denote by S; the subset
of § consisting of the first [segments in ¥. The dynamic algorithm maintains an
augmented influence graph Za(%), whose nodes correspond to the trapezoids that
are defined and without conflict over the current subsets S;, ! = 1,...,n. The
nodes and arcs in this graph are identical to those built in the influence graph by
the on-line algorithm described in subsection 5.3.2. In addition, the augmented
influence graph includes a conflict graph between the trapezoids corresponding to
the nodes of the influence graph, and the segments in S. The conflict graph is im-
plemented using the interconnected list system, as explained in section 6.2. The
structure does not encode all the adjacency relationships between the trapezoids
but only those between the trapezoids in the current decomposition (correspond-
ing to leaves of the influence graph).

Adding the n-th segment does not create problems and can be carried out
exactly as explained in subsection 5.3.2. The only difference is that the conflict
lists are updated when the conflicts are detected during the locating phase when
inserting Op,.

Let us now explain how to delete segment Oy, of rank k in the chronological
sequence . As before, we denote by S the subset S;\ {Ok} of § and by X' the
chronological sequence {O1,...,Ok-1,Ok+1,...Op}.

The algorithm proceeds along the usual lines and performs the two phases:
locating and rebuilding. The locating phase detects the nodes of Za(X) that
conflict with Ok, and the destroyed and unhooked nodes. In the rebuilding phase,
the algorithm processes the segments of rank [> k that are the creators of new or
unhooked nodes. For this, the algorithm manages a priority queue which contains,
at each step of the rebuilding process, the killers in ¥’ of the critical regions. For

6.4. Dynamic decomposition of a set of line segments 111

each such object Oy, a killer of a critical region, the algorithm builds the new
nodes created by O; and rehooks the unhooked nodes created by O;. Figure 6.1
shows how the influence graph built for the four segments {O,, 02,03, 04} is
modified when deleting O3. The reader may observe again how the graph was
created incrementally, in figures 5.6, 5.7 and 5.8. In this example, nodes B and H
are killed by Os, nodes J,K,L,M ,N,O0,P,Q,5,U,V are destroyed, nodes R, 7",W
are unhooked (they are created by O4), and B’ is a new node (its creator is Oy).

The subsequent paragraphs describe in great detail the specific operations
needed.

Locating. This phase is trivial: all the nodes that conflict with the object
Ok to be deleted, or that are determined by a subset containing O, are visited
together with their children. The algorithm builds a dictionary D of unhooked
or destroyed nodes, which will be used during the rebuilding phase.

Rebuilding. The priority queue ©Q, which contains the killers of critical re-
gions, is initialized with the nodes in Za(X) that are killed by Ok.

At each step in the rebuilding process, the algorithm extracts from the priority
queue Q the object O; of smallest chronological rank. It also retrieves the list of
the critical regions that conflict with O.

Each of these regions is split into at most four subregions by O;, and the walls
stemming from its endpoints and its intersection points. These subregions are
not necessarily trapezoids in the decomposition Dec(S;). Indeed, the walls cut
by O, have to be shortened, keeping only the part that is still connected to the
endpoint or intersection point from which it stems. The other part of the wall
must be removed and the adjacent subregions separated by this part must be
joined. The join can be one of two kinds: internal when the portion of wall to be
removed separates two critical regions, and external when it separates a critical
region from a non-critical region (see figure 6.2).

To detect which regions to join,? the algorithm visits all the critical regions
that conflict with Oy, and stores in a secondary dictionary D] the walls incident
to these regions that are intersected by O;. Any wall in this dictionary that
separates two critical regions gives rise to an internal join, and any wall incident
to only one critical region gives rise to an external join.

In a first phase, the algorithm creates a temporary node for each subregion
resulting from the splitting of a critical region by O; or the walls stemming from
O;. The node that corresponds to a subregion F; of the region F' is hooked in the
graph as a child of F'. Its conflict list is obtained by selecting, from the conflict

“The algorithm cannot traverse the sequence, ordered by O;, of critical regions for two rea-
sons: (1) it does not maintain the vertical adjacencies between the internal nodes of the influence
graph, and the adjacencies between either the trapezoids of the decomposition Dec(S]_) or the
critical regions of Z;_; are not available, and {2) the intersection of O; with the union of the
regions in Z;_; may not be connected (see for instance figure 6.4).

Chapter 6. Dynamic randomized algorithms

112

Figure 6.1. Deleting a segment.

6.4. Dynamic decomposition of a set of line segments 113

© ' (@

Figure 6.2. Internal and external joins:
(a) The decomposition Dec(S;) before deleting Oy.
(b) The decomposition Dec(S;_,), with the critical zone Z;-1 shaded.
(c) Reinserting O;. Splitting the critical regions and joining: internal join
G = G1 U G2, external join F = G U Fy. Region H is unhooked.
(d) The decomposition Dec(S;) and the critical zone Z;.

list of F, the segments intersecting F;. Then the algorithm processes the internal
and the external joins, as explained below.

1. Internal joins. Every maximal set {Gy,...,Gr} of subregions, pairwise ad-
jacent and separated by walls to be removed, must be joined together into a single
region G. The algorithm creates a temporary node for G. The nodes correspond-
ing to G1,Gy,...,Gh are removed from the graph and the node corresponding
to G inherits all the parents of these nodes. The conflict list of G is obtained by
merging the conflict lists of Gy, Ga, ..., Gh, removing redundancies. For this, we
use a procedure similar to that of subsection 5.2.2, but which need not know the
order along O; of the subregions to be joined. By scanning the conflict lists of
these subregions successively, the algorithm can build for each segment O in S a
list Le(O) of the subregions that conflict with O. A bidirectional pointer inter-

114 Chapter 6. Dynamic randomized algorithms

connects the entry in the list L'(G;) that corresponds to an object O with the
entry in Lg(O) corresponding to the subregion G;. The conflict list of G can be
retrieved by scanning again all the conflict lists L'(G;) of the subregions Gj, .. .,
Gp. This time, each segment O encountered in one of these lists is added to the

conflict list of G and removed from the other conflict lists, using the information
stored in Lg(O).

Let us call auziliary regions the regions obtained after all the internal joins.
These regions are either subregions that needed no internal join, or regions ob-
tained from an internal join of the subregions. An auxiliary region that does not
need to undergo any external join is a region of the decomposition Dec(S;). Let
H be such a region. This region is new if it conflicts with Ok, unhooked other-
wise. In the former case, the temporary node for H becomes permanent and the
killer of H is inserted into the priority queue Q. In the latter case, a node for H
already exists in the influence graph Za(X). A simple query in the dictionary of
unhooked nodes retrieves this node, which can then be rehooked to the parents
of the auxiliary node created for H.

2. External joins. In a second phase, the algorithm performs the external joins.
An auxiliary region undergoes a left join if its left wall must be removed, and a
right join if its right wall must be removed, and a double left-right join if both its
vertical walls must be removed. Let G be an auxiliary region undergoing a right
join. For instance, this is the case for region G = G1 UG} in figure 6.2. The right
wall of G is on the boundary of the critical zone, since this is an external join. This
wall is therefore not cut by the deleted segment Op. When the decomposition
of & is built incrementally according to the order in the sequence ¥, this wall
appears at a certain step and is removed when O; is inserted. Thus, among all
the regions in Za(X), there is one region Fy created by O; that contains the right
wall of G.3 The region F; is necessarily destroyed or unhooked: indeed, Fy is a
trapezoid in the decomposition Dec(S;), and has a non-empty intersection with
one or more critical regions in Z;_;. As every critical region in Z;_; is contained
in the union of the trapezoids of Dec(S;—1) of which Oy is a determinant, the
region Fy must intersect those trapezoids. Thus at least one of the parents of Fy
in the graph Za(X) is a destroyed node. Similarly, if the left wall of G must be
removed, there is in Za(X) one destroyed or unhooked region Fj created by O;
that contains the left wall of G. If the join is double left-right, F; and F; may
be distinct or identical (see figure 6.3).

Several auxiliary regions may be joined into the same permanent region (see
figure 6.4). Let {G1,G?,. .., G;} be the sequence ordered along O; of the auxiliary

31t would have been more desirable to subscript F by [and r for left and right, but this
would have conflicted with the index [for O; and created confusion. We have kept a French
touch with the indices g and r for the French gauche and droit, meaning respectively left and
right. (Translator’s note)

6.4. Dynamic decomposition of a set of line segments 115

Figure 6.3. External joins: double left-right joins.

regions? whose left wall is contained in the same region F, of Za(X) created by
O,. If j > 1, then the right walls of these auxiliary regions {G},Gg,...,G;-1}
are also contained in Fy and must be removed as well. If the right wall of G is
a permanent wall (that does not have to be removed), the join results in a single
trapezoid of the decomposition Dec(S)) that is the same as F,U G U...UG; =
Fy UG (see figure 6.4). If the right wall of G; also has to be removed, then
we introduce the ordered sequence of auxiliary regions {Gj,Gj+1,...,Gr}: this
sequence consists of regions whose right wall must be removed and which lie in
the same region Fy of Ta(X) created by O;. The left walls of the regions in
{Gj,Gj+1,...,Gnr} then also belong to Fy and have to be removed. The join
operates on the auxiliary regions {Gy,...,Gj,...,Gr} and results in a unique
trapezoid in Dec(S)) that is the same as F,UG1U...UGLUF; = F;UG; U Fy.

We present below the operations to be performed in the latter case of a double
left-right join. The former cases can be handled in a similar manner. Suppose
for now that the auxiliary regions {G1,...,Gj,...,Ghr} as well as the regions F,
and Fj in the decomposition Za(X) that participate in the join are known to the
algorithm.

If the trapezoid resulting from the join F' = F, U G; U Fy does not conflict
with Oy (see figure 6.3, right), it is a trapezoid in the decomposition Dec(S;).
Necessarily, the regions Fy, Fy, and F are the same, and the corresponding node
in Za(X) is unhooked. It then suffices to search for this node in the dictionary of
unhooked nodes, to remove the auxiliary nodes created for Gi, Gy, ..., G, and
to rehook the node corresponding to F, with the critical nodes in the parents of
G1,Gs,...,Gy as the parents of F.

If the resulting trapezoid F' = Fy, U G; U Fy conflicts with Oy (see figure 6.3,
left), then it is a new region of Za(X'), and the regions Fy; and Fy in Za(X)

“We must emphasize that even though the given description of the region resulting from an
external join refers to the order of the joined auxiliary regions along O;, the algorithm does not
know this order, nor does it need it.

116 Chapter 6. Dynamic randomized algorithms

I

R e LECETEE

(c)

Figure 6.4. External joins.
{a) The decomposition before deleting Ox.
(b) Reinserting O;. The auxiliary regions.
(c) Joining auxiliary regions G and G; into F' = Fy UG, UGs.

are destroyed. The auxiliary nodes created for Gy, Gy, ..., Gy are removed, and
replaced by a single node corresponding to F. This node is then rehooked to the
parents of Fy and Fy that are not destroyed, and to all the critical parents of Gy,
G2, ..., Gp. The conflict list of F' is derived from those of Fy,Gy, Ga, ..., Gy
and Fy, as is the case for internal joins. Lastly, the killer of F' is inserted into the
priority queue Q.

We now have to explain how to retrieve the unhooked or destroyed nodes
corresponding to the regions Fy; and Fy involved in the join. Let G be an auxiliary
region whose left wall must be removed. The corresponding region Fj is either

6.4. Dynamic decomposition of a set of line segments 117

destroyed or unhooked, created by O;, and the segments that support its floor
and ceiling® respectively support the floor and ceiling of G. Any region in the
decomposition of a given set of segments is identified uniquely by its floor, its
ceiling, and one of its walls. Below, we show that either we can find one of the
walls of F},, or we can identify a destroyed region Fg' which is the unique sibling
of Fy in Za(X).

e If G conflicts with Oy (as in figure 6.5a), the right wall of Fy is determined
by Ok, and can be computed (by looking only at G and Oy).

e If G does not conflict with O, but its right wall is permanent (see fig-
ure 6.5b), then this right wall is also that of Fy.

e Lastly, if G does not conflict with Oy, and if both its walls must be removed
(see figure 6.5¢), then segment O; intersects both walls of a critical region
that was subsequently split into G and G’. The other subregion G’ also
conflicts with Oy but does not undergo any join. In Za(X), exactly one
node F!; has O; for creator, is destroyed, and shares the same floor, same
ceiling, and same left wall as G'. This node F; has only one parent, and
this parent has two children, one of which is Fé and the other the node Fj
that we are looking for: indeed, the parent of Fé corresponds to a trapezoid
in the decomposition Dec(S;-.1) whose two walls are intersected by O;.

In either case, the region Fy, or its sibling Fé, is known through its creator, its
floor, its ceiling, and one of its left or right walls. This information is enough to
characterize it. Naturally, the same observation goes for Fy or its sibling F' 7 We
can then use the dictionary D storing all the destroyed or unhooked nodes. This
dictionary comes in two parts, Dy and Dy. In the dictionary Dy, the nodes are
labeled with:

e the creator segment,
e the segment supporting the floor of the trapezoid,
e the segment supporting the ceiling of the trapezoid,

e the pair of segments whose intersection determines the right wall of the
trapezoid, or the same segment repeated twice if the wall stems from the
segment’s endpoint.

Similarly, in its counterpart Dy, nodes are labeled the same way, except that in
the last component the right wall is replaced by the left wall. Any destroyed or
unhooked node is inserted into both dictionaries Dy and Dy.

SWe recall that the floor and ceiling of a trapezoid are its two non-vertical sides.

118 Chapter 6. Dynamic randomized algorithms

(c)

Figure 6.5. External joins:
(a) G conflicts with Ox.
(b) the right wall of G is permanent.
(c) Double left-right join.

Analysis of the algorithm

To analyze this algorithm, we first check that it does satisfy the update condi-
tions 6.3.5. The first condition is satisfied, since the augmented influence graph
has the same nodes and arcs as the influence graph built by the on-line algorithm
of subsection 5.3.2, which itself satisfies the update condition 5.3.3. Therefore,
we need only look at deletions.

1. Number of operations on the dictionaries. Each deletion involves a
two-sided dictionary D of destroyed or unhooked nodes, as well as a dictionary
D], for each reinserted segment O;, of walls in the critical zone intersected by
O;. A destroyed or unhooked node is inserted and queried at most once in D.
A critical region in Z;_; has at most two walls which must be inserted into Di,
and this region will not be a critical region any more after the reinsertion of Oy.
The number of operations on all dictionaries D; is thus at most proportional to
the total number of critical regions encountered in the rebuilding phase. Any
critical region is either killed or new. The total number of operations is thus at
most proportional to the number of nodes that are killed, destroyed, unhooked,
or new.

2. Conflict lists of new nodes. The conflict list of a new node is obtained by
scanning the conflict lists of the auxiliary or destroyed regions of which it is the

6.4. Dynamic decomposition of a set of line segments 119

union. Similarly, the conflict list of an auxiliary region is obtained by traversing
the conflict lists of the subregions of which it is the union, and the conflict lists
of those subregions are themselves obtained by consulting the conflict lists of the
critical regions cut by the reinserted object. During the rebuilding process, each
killed or new region appears at most once as a critical region which conflicts
with the reinserted object. Moreover, each subregion is involved in at most one
internal join, and each auxiliary or destroyed region in at most one external join.
From this, we derive that the conflict lists of the new nodes can be computed in
time proportional to the total size of the conflict lists of the nodes that are killed,
destroyed, or new.

3. Other operations. Apart from managing the priority queue Q, querying the
dictionaries, and setting up the conflict lists of the new nodes, all the remaining
operations are elementary. Their number is at most proportional to the number
of new or destroyed nodes, and to the number of incident arcs in the augmented
influence graph.

If S is a set of n segments, with a intersecting pairs, the mathematical expecta-
tion fo(l, S) of the number of regions defined and without conflict over a random

l-sample of S is O(l + a%), as given by lemma 5.2.4. Thus,
1 v fo(l,S)\ _ a
O(l};T =0(1+1),

O(Zn:f—o%ﬂ) =O(logn+%).

=1

We can now use theorem 6.3.6 to state the following theorem, which summarizes
the results so far:

Theorem 6.4.1 Under the assumptions of dynamic randomized analyses, an
augmented influence graph can be used to maintain the vertical decomposition
of a set of segments with the following performances. Let S be the current set of
segments, n be the size of S, and a be the number of intersecting pairs in S.

o The expected storage required by the algorithm is

O(nlogn + a).

o Inserting the n-th segment takes an average time

a

120 Chapter 6. Dynamic randomized algorithms

e Deleting a segment takes an average time
a
] (logn + (1 + E)(t + t’)) :

where the parameters t and t' stand respectively for the complezities of the
operations on dictionaries and priority queues.

Therefore, if we use perfect dynamic hashing together with stratified tree, the
expected cost of a deletion is

0 (logn + (1 + %) loglogn) :

If we use balanced binary trees, it remains
0 (logn + (1 + %) logn) .

For the preceding algorithm, we have merely applied the general principles of
the augmented influence graph to the case of computing the vertical decomposi-
tion of a set of segments. In fact, in this specific case, we may derive a simpler
algorithm, yet one that uses less storage. This algorithm does not need to keep
the conflict lists and maintains a non-augmented influence graph. It is outlined in
exercises 6.1, 6.2 and 6.3, and its performances are summarized in the following
theorem:

Theorem 6.4.2 Under the assumptions of dynamic randomized analyses, an in-
fluence graph can be used to maintain the vertical decomposition of a set of seg-
ments with the following performances. Let § be the current set of segments, n
be the size of S, and a be the number of intersecting pairs in S.

e The expected storage required by the algorithm is
O(n + a).
o Inserting a segment takes an average time of

a
O(logn + r_z)

e Deleting a segment takes an average time of
a
O(+2)t+1)),

where the parameters t and t' stand respectively for the complexity of the
operations on dictionaries and priority queues.

Therefore, the expected cost of a deletion is O ((1 + 2) loglogn) if we use per-
fect dynamic hashing coupled with stratified trees. It remains O ((1 + £)logn)
if we use balanced binary trees.

6.5. Ezxercises 121

6.5 Exercises

Exercise 6.1 (Dynamic decomposition) Let us maintain dynamically the decom-
position of a set of segments using an influence graph. Show that the creator of a new
trapezoid, or a trapezoid unhooked during a deletion, is also the creator of at least one
destroyed trapezoid.

Hint: The proof of this fact relies on the two additional properties possessed by the
influence graph of a decomposition:

1. The influence domain of an internal node is contained in the union of the influence
domains of its children.

2. If an object Oy is the determinant of an internal node, it necessarily is a determi-
nant of at least one child of this node.

Let O; be a segment creating a new trapezoid, or a trapezoid unhooked during the
deletion of Of. As in the entire chapter, the segments are indexed by their chronological
rank and S; stands for the set of the first ¢ segments (in chronological order). To prove
our assertion, we investigate the addition of Oy and successively O; to the decomposition
Dec(S]_;)- The decompositions obtained are then successively Dec(S;—1) and Dec(S;).
It can be shown that there is a region H in Dec(S;) determined by a set that contains
both O and Oy.

Exercise 6.2 (Dynamic decomposition) Let us assume that we use an influence
graph to dynamically maintain the decomposition of a set & of segments. Here, we
consider the deletion of a segment O. We still use the notation of section 6.4. In partic-
ular, the segments are indexed by their chronological rank. Let O; be the segment to be
reinserted during the deletion of Ok. Show that for any critical region F' in the critical
zone Z;_, that conflicts with O;, there is at least one destroyed region H, created by Oy,
that intersects F', and satisfies at least one of the following conditions:

1. F contains a wall of H that stems from an endpoint of O;, or an intersection point
on O;, and that butts against Oy (see figure 6.6a),

2. F contains a wall of H that stems from an endpoint of Oy, or an intersection point
on O, and that butts against O; (see figure 6.6b),

3. F contains a wall of H that stems from the intersection O; N O, (see figure 6.6¢),

4. F is bounded by two walls, one stemming from a point on O, the other stemming
from a point on Oy, and both walls are contained within F' (see figure 6.6d),

5. O; and Oy, support the floor and ceiling of H, both of which intersect F' (see
figure 6.6¢).

Exercise 6.3 (Dynamic decomposition) The aim of this exercise is to show how we
may dynamically maintain the decomposition of a set S of segments using a simple
influence graph, without the conflict lists.

122 Chapter 6. Dynamic randomized algorithms

(d)

Figure 6.6. Detecting conflicts in critical zone. Region F' is shaded, and region H within
is emphasized.

The segments that must be reinserted during a deletion are the creators of destroyed
regions (see exercise 6.1} and can be detected during the locating phase.

Let O; be one of the segments to be reinserted during the deletion of O. To retrieve
all the critical regions that conflict with Oy, the algorithm considers in turn the destroyed
regions H with creator O;, and selects the critical regions F' related to H by one of the
five cases described in exercise 6.2.

For this, the deletion algorithm maintains an augmented dictionary .4, storing the
sequence ordered along Oy of critical regions intersected by Og. Let H be one of the
destroyed regions, created by O;. If H has a wall that stems from a point on O; and
butts against Ok, or a wall stemming from O; N Ok, this wall is located in the structure
A, and the critical region containing this wall is retrieved. If H has two walls stemming
from a point on Ok and from a point on Oy, the region containing the wall stemming
from the point on Oy is searched for in A, and it is selected if it also contains the wall
of H stemming from the point on O;. Lastly, if O; and O support the floor and ceiling
of H, the right wall of H is searched for in .4, and any critical region that intersects the
floor and the ceiling of H is selected.

1. The selected region obviously conflicts with O;. As shown in exercise 6.2, any
critical region that conflicts with H is selected. Show that such a region can be selected
at most 16 times.

To speed up the locating phase, the algorithm maintains the lists of nodes killed by
each object stored in the structure. To perform the deletion, the algorithm proceeds
along the following lines.

Locating. The algorithm traverses the influence graph starting on the nodes killed
by Ok, and visits the destroyed or unhooked nodes. During this traversal, the algorithm

sets up a dictionary D that stores the destroyed and unhooked nodes, and a list £ of the
creators of the destroyed nodes.

6.6. Bibliographical notes 123

Rebuilding. The list £ is sorted by chronological order, for instance by storing the
elements in a priority queue, and extracting them in order. The redundant elements are
extracted only once. The dictionary A initially stores the regions killed by Ok.

The objects of £ are processed in chronological order. For each object Oy, the critical
regions that conflict with O; are selected as explained above. The remaining operations
are identical to those in the algorithm of section 6.4. The conflict lists of the new regions
do not have to be computed. On the other hand, the dictionary A must be updated.

2. Show that the performances of this algorithm are those given by theorem 6.4.2.

Exercise 6.4 (Lazy dynamic algorithms) In this exercise, we propose a lazy method
to dynamically maintain the decomposition of a set of segments. For simplicity, let us
assume that the segments do not intersect. The algorithm maintains an influence graph
in the following lazy fashion:

1. The graph is a mere influence graph, no conflict lists are needed.

2. During an insertion, the nodes corresponding to the new trapezoids are hooked to
the nodes corresponding to the killed trapezoids as in the algorithms described in
subsection 5.3.2 and section 6.4.

3. During a deletion, the nodes corresponding to the new trapezoids are hooked to
leaves of the graph that correspond to destroyed trapezoids. More precisely, a node
corresponding to a new trapezoid is hooked to leaves of the graph that correspond
to the destroyed nodes that have a non-empty intersection with the new trapezoid.
No node is removed from the graph.

4. The algorithm keeps the age of the current graph in a counter, meaning the total
number of operations (insertions and deletions) performed on this graph. Each
time the number of segments effectively present falls below half the number stored
in this counter, the algorithm builds the influence graph anew by inserting the
segments effectively present into a brand new structure.

1. Show that when O(n) segments are stored in the structure, the expected cost of an
insertion or a location query is still O(logn).

2. The cost of the periodic recasting of the graph is shared among all the deletions.
Show that the amortized complexity of a deletion is still O(log n) on the average. (Recall
that the segments do not intersect, by assumption.)

Hint: It will be noted that the number of children of a node in the influence graph is not
bounded any more. The analysis must then have recourse to biregions (see exercise 5.7)
to estimate the expected complexity of the locating phases.

6.6 Bibliographical notes

The approach discussed in this chapter consists in forgetting deleted objects altogether,
and restoring the structure to the exact state which it would have been in, had this object
never been inserted. The first algorithm following this approach is that of Devillers,
Meiser, and Teillaud [81] which maintains the Delaunay triangulation of a set of points

124 Chapter 6. Dynamic randomized algorithms

in the plane. The algorithm by Clarkson, Mehlhorn, and Seidel [70] uses the same
approach to maintain the convex hull of a set of points in any dimension. The method
was then abstracted by Dobrindt and Yvinec [86]. A similar approach is also discussed
by Mulmuley [176], whose book is the most comprehensive reference on this topic.

There is another way to dynamize randomized incremental algorithms. This approach,
developed by Schwarzkopf [198, 199}, can be labeled as lazy. As outlined in exercise 6.4,
it consists in not removing from the structure the elements that should disappear upon
deletions. These elements are marked as destroyed, but remain physically present, and
still serve for all subsequent locating phases. Naturally, the structure may only grow.
When deletions outnumber insertions, the number of objects still present in the structure
is less than half the number of objects still stored, and the algorithm completely rebuilds
the structure from scratch, by inserting one by one the objects that were not previously
removed.

4

Finally, we shall only touch the topic of randomized or derandomized dynamic struc-
tures which efficiently handle repetitive queries on a given set of objects, while allowing
objects to be inserted into or deleted from this set. These structures embody the dy-
namic version of randomized divide-and-conquer structures, discussed in the notes of the
previous chapter. These dynamic versions can be found in the works by Mulmuley [175],
Mulmuley and Sen [178], Matousek and Schwarzkopf [153, 156], Agarwal, Eppstein, and
Matousek [3] and Agarwal and Matousek [4].

