Chapter 8

Incremental convex hulls

To compute the convex hull of a finite set of points is a classical problem in com-
putational geometry. In two dimensions, there are several algorithms that solve
this problem in an optimal way. In three dimensions, the problem is consider-
ably more difficult. As for the general case of any dimension, it was not until
1991 that a deterministic optimal algorithm was designed. In dimensions higher
than 3, the method most commonly used is the incremental method. The algo-
rithms described in this chapter are also incremental and work in any dimension.
Methods specific to two or three dimensions will be given in the next chapter.

Before presenting the algorithms, section 8.1 details the representation of poly-
topes as data structures. Section 8.2 shows a lower bound of Q(nlogn + nl4/2])
for computing the convex hull of n points in d dimensions. The basic operation
used by an incremental algorithm is: given a polytope C and a point P, derive the
representation of the polytope conv(C U {P}} assuming the representation of C
has already been computed. Section 8.3 studies the geometric part of this prob-
lem. Section 8.4 shows a deterministic algorithm to compute the convex hull of n
points in d dimensions. This algorithm requires preliminary knowledge of all the
points: it is an off-line algorithm. Its complexity is O(nlogn + nld+1)/ 2J), which
is optimal only in even dimensions. In section 8.5, the influence graph method
explained in section 5.3 is used to obtain a semi-dynamic algorithm which al-
lows the points to be inserted on-line. The randomized analysis of this algorithm
shows that its average complexity is optimal in all dimensions. Finally, section 8.6
shows how to adapt the augmented influence graph method of chapter 6 to yield
a fully dynamic algorithm for the convex hull problem, allowing points to be in-
serted or deleted on-line. The expected complexity of an insertion or deletion is
O(logn + nl¥/21=1) which is optimal.

Throughout this chapter, we assume that the set of points whose convex hull is
to be computed is in general position. This means that any subset of k+1 < d+1
points generates an affine subspace of dimension k. This hypothesis is not crucial

170 Chapter 8. Incremental convexr hulls

REETS
St

Figure 8.1. A tetrahedron and its incidence graph.

for the deterministic algorithm (see exercise 8.4), but it allows us to simplify the
description of the algorithm and to focus on the central ideas. It becomes an
essential assumption, however, for the randomized analyses of the on-line and
dynamic algorithms.

8.1 Representation of polytopes

To compute the convex hull of a set of points amounts to setting up a data
structure that represents the polytope which is the convex hull of the set. A
polytope is generally represented by the incidence graph of its faces, which stores
a node for each face and an arc for each pair of incident faces. Recall that two
faces are incident if their dimensions differ by one and if one is contained in the
other. Figure 8.1 shows the incidence graph of a tetrahedron.

Using the upper bound theorem 7.2.5, the incidence graph of a d-polytope can
be stored using O(nl-d/ 2y space. This graph describes the entire combinatorial
structure of the polytope. In order to describe its geometric structure, some
additional information has to be stored: for instance, the node storing a vertex
contains the coordinates of that vertex, and the node storing a facet contains the
coefficients in an equation of the hyperplane that supports the polytope along
that facet.

Sometimes, it may be enough to store subgraphs of the incidence graph. The
j-skeleton of a polytope is the subgraph of the incidence faces of dimension at
most j. The 1-skeleton of a polytope is simply made up of the vertices and edges
of that polytope.

In a d-polytope, every (d — 2)-face is incident to exactly two (d — 1)-faces

8.2. Lower bounds 171

(theorem 7.1.7); two (d — 1)-faces of a polytope are said to be adjacent if they
are incident to a common (d — 2)-face. Thus, the incidence graph of a polytope
also encodes the adjacency graph, which has a node for each facet and an arc
for each pair of adjacent facets. The arcs of the adjacency graph are in one-to-
one correspondence with the (d — 2)-faces of the polytope. If the polytope is
simplicial, the full incidence graph can be retrieved from the adjacency graph in
time linear in the number of faces (see exercise 8.2).

8.2 Lower bounds

Theorem 8.2.1 The complexity of computing the convex hull of n points in d
dimensions is Q(nlogn + nld/2l),

Proof. Subsection 7.2.4 shows that the convex hull of n points in the Euclidean
space E¢ may have Q(nl%/2]) faces. In any dimension, Q(nl%2)) is thus a trivial
lower bound for the complexity of computing convex hulls. In two dimensions, the
lower bound Q(nlogn) is a consequence of theorem 8.2.2 proved below. Finally,
any set of points in E? can be embedded into E3, so the complexity of computing
convex hulls in E® cannot be smaller than in E*. a

Theorem 8.2.2 The problem of sorting n real numbers can be transformed in
linear time into the problem of computing the convex hull of n points in E*.

Proof. Consider n real numbers z1, z9, ..., Z,, which we want to sort. One way
to do this is to map the number z; to the point A; with coordinates (z;,z?) on
the parabola with equation y = 2 (see figure 8.2). The convex hull of the set
of points {A4; : i =1,...,n} is a cyclic 2-polytope, and the list of its vertices
is exactly the list of the vertices {A; : ¢ =1,...,n} ordered according to their
increasing abscissae. U

8.3 (Geometric preliminaries

The incremental method for computing the convex hull of a set A of n points in
E? consists in maintaining the succession of convex hulls of the consecutive sets
obtained by adding the points in .4 one by one. Each convex hull is represented
by its incidence graph. Let C be the convex hull of the current subset and P the
point to be inserted next into the structure, at a given step in the algorithm. The
problem is thus to obtain the incidence graph of conv(C U {P}), once we know
that of C. The following lemmas clarify the relations existing between these two
graphs.

172 Chapter 8. Incremental convex hulls

Figure 8.2. Transforming a sorting problem into a convex hull problem in two dimensions.

Figure 8.3. The incremental construction of a convex hull.

Suppose that point P and polytope C are in general position, meaning that P
and the vertices of C form a set of points in general position. The facets of C
can then be separated into two classes with respect to P. Let F' be a facet of C,
Hp the hyperplane that supports C along F, and H}T (resp. Hg) the half-space
bounded by HF that contains (resp. does not contain) C. The facet F' is red with
respect to P if it is visible from point P, that is if P belongs to the half-space
Hp . It is colored blue if P belongs to H}'. From the general position assumption,
it follows that P never belongs to the supporting hyperplane Hr and therefore
every facet of C is either red or blue with respect to P.

Using theorem 7.1.7, any face of C is the intersection of the facets of C which
contain it. The faces of C of dimension strictly smaller than d—1 can be separated
into three categories with respect to P: a face of C is red if it is the intersection

8.3. Geometric preliminaries 173

of red facets only, blue if it is the intersection of blue facets only, or purple if it is
the intersection of red and blue facets.

Intuitively, the red faces are those that would be lit if a point source of light
was shining from P, the blue faces are those that would remain in the shadow,
and the purple faces would be lit by rays tangent to C. In figure 8.3, the blue
faces of C are shaded, the red edges are outlined in dashed lines, and the purple
edges are shown in bold.

Lemma 8.3.1 Let C be a polytope and P a point in general position with respect
to C. Ewvery face of conv(C U {P}) is either a blue or purple face of C, or the
convez hull conv(G U {P}) of P and a purple face G of C.

Proof. Note that if P belongs to C, all the facets of C are blue with respect to
C (theorem 7.1.4) and the content of the lemma. is trivial.

In the other case, we first show that a blue face of C is a face of
conv(C U {P}). Let F be a facet of C that is blue with respect to P. Since
P belongs to the half-space H}', the hyperplane Hy which supports C along F
also supports conv(C U {P}) and conv(C U {P}) N Hr = F, which proves that
F is indeed a facet of conv(C U {P}). Any blue facet of C is thus a facet of
conv(C U {P}). Any blue face of C, being the intersection of blue facets of C, is
also the intersection of facets of conuv(C U {P}): therefore a blue face of C is also
a face of conv(C U{P}) (theorem 7.1.7).

Next we show that, for any purple face G of C, G and conv(G U {P}) are
faces of conuv(C U {P}). If G is a purple face of C, then there is at least one
red facet of C, say F1, and one blue facet of C, say Fp, that both contain G
(see figure 8.4). Let H; (resp. H2) be the hyperplane supporting C along F;
(resp. Fy). Point P belongs to the half-space H;" which contains C, and since
HiNconv(CU{P}) = G we have shown that G is a face of conv(CU{P}). Point P
also belongs to the half-space Hy that does not contain C. Imagine a hyperplane
that rotates around H; N Hz while supporting C along GG. There is a position
H for which this hyperplane passes through point P. Hyperplane H supports
conv(C U {P}), and since conv(C U {P}) N H = conv(G U {P}), we have proved
that conv(G U {P}) is a face of conv(C U{P}).

Finally, let us show that every face of conv(CU{P}) is either a blue or a purple
face of C, or the convex hull conv(G U {P}) of P and of a purple face G of C.
Indeed, a hyperplane that supports conv(CU{P}) is also a supporting hyperplane
of C, unless it intersects conv(C U {P}) only at point P. As a consequence, any
face of conv(C U{P}) that does not contain P is a (blue or purple) face of C, and
any face conv(C U {P}) that contains P is of the form conv(G U {P}) where G
is a purple face of C. Note that the vertex P of conv(C U {P}) is also a face of
the form conv(G U {P}) obtained when G is the empty face of C. Indeed, when

174 Chapter 8. Incremental convex hulls

Figure 8.4. Faces of conv(G U {P}).

P does not belong to C, C necessarily has some facets that are blue and some
facets that are red with respect to P. The empty face, being the intersection of
all faces of C, is therefore purple. O

The following lemma, whose proof is straightforward, investigates the incidence
relationships between the faces of C and those of conv(C U { P}).

Lemma 8.3.2 Let C be a polytope and P a point in general position with respect
to C.

o If F and G are two incident faces of polytope C, either blue or purple with
respect to P, then F and G are incident faces of conv(C U {P}).

o If G is a purple face of C, then G and conv(G U {P}) are incident faces of
conv(C U {P}).

o Finally, if F and G are incident purple faces of F, then conv(FU{P}) and
conv(G U {P}) are incident faces of conv(C U {P}).

Recall that two facets of a polytope C are adjacent if they are incident to the
same (d — 2)-face and that the adjacency graph of a polytope stores a node for
each facet and an arc for each pair of adjacent facets.! We say that a subset
of facets of a polytope C is connected if it induces a connected subgraph of the
adjacency graph of C.

Lemma 8.3.3 Consider a polytope C and a point P in general position. The set
of facets of C that are red with respect to P is connected, and the set of facets of
C that are blue with respect to P is also connected.

'Two facets sharing a common k-face, k < d — 2, may be not adjacent, even though they
are connected as a topological subset of the boundary of the polytope. Such a situation is only
possible in dimension d > 3.

8.3. Geometric preliminaries 175

Figure 8.5. Isomorphism between the purple faces and the faces of a (d — 1)-polytope.

Proof. If P belongs to C, the set of the red facets is empty, any facet is blue,
and the lemma is trivial. We will therefore assume that P does not belong to C.

The connectedness of the set of red facets can be proved easily in two dimen-
sions. Indeed, the polytope conv(C U {P}) has two edges incident to P. By
lemma 8.3.1, there are exactly two purple vertices of C with respect to P. Hence,
the adjacency graph of the 2-polytope C is a cycle that has exactly two arcs
connecting a blue and a red facet.

Let us now discuss the case of dimension d, and suppose for a contradiction that
the set of facets of C that are red with respect to P is not connected. Therefore,
we may choose two points Q and R on two facets of C that belong to two distinct
connected components of the set of red facets of C. Let H be the affine 2-space
passing through points P, , and R. This plane intersects polytope C along a
2-polytope HN H. The edges of CN H that are red with respect to P are exactly
the intersections of the red facets of C with H. The points () and R belong to two
separate connected components of the set of red edges of C N H. Connectedness
of the set of red faces of a 2-polytope would then not hold, a contradiction.

Analogous arguments prove the connectedness of the set of facets of
conv(C U {P}) that are blue with respect to P. O

Finally, the lemma below completely characterizes the subgraph of the inci-
dence graph induced on the faces of C that are purple with respect to P.

Lemma 8.3.4 Let C be a polytope and P a point in general position with respect
toC. IfC has n vertices and does not contain P, then the set of the proper faces of
C that are purple with respect to P is tsomorphic, for the incidence relationship,
to the set of faces of a (d — 1)-polytope whose number of vertices is at most n.

Proof. From lemma 8.3.1, we know that the faces of polytope C that are purple
with respect to P are in one-to-one correspondence with the faces of conv(CU{P})

176 Chapter 8. Incremental convez hulls

that do not contain P. Since point P does not belong to C, there must be
a hyperplane H which separates P from C (see exercise 7.4). Hyperplane H
intersects all the faces of conv(C U {P}) that contain P except for the vertex P,
and those faces only. Moreover, the traces in H of the faces of conv(C U {P}) are
the proper faces of the (d — 1)-polytope conv(C U {P})N H, and the traces in H
of incident faces of conv(C U{P}) are incident faces of conv(CU{P})N H. Thus,
the incidence graph of the (d — 1)-polytope conv(C U {P}) N H is isomorphic to
the subgraph of the incidence graph of conv(C U {P}) induced by the faces that
contain vertex P. Lemmas 8.3.1 and 8.3.2 show that this subgraph is isomorphic
to the subgraph of the incidence graph of P induced by the faces of C that are
purple with respect to P. Lastly, the vertices of polytope conuv(C U {P})N H are
the traces in H of the edges of conv(C U {P}) incident to vertex P, and their
number is at most n. O

8.4 A deterministic algorithm

In this section we describe an incremental deterministic algorithm to build the
convex hull of a set A of n points. The points in A are processed in increas-
ing lexicographic order of their coordinates. To simplify the description of the
algorithm, we assume below that the set is in general position. We denote by
{Ai, Aa,...,An} the points of A indexed by lexicographic order. Let A; be the
set of the first i points of A.

The general idea of the algorithm is as follows:
1. Sort the points of A in increasing lexicographic order of their coordinates.

2. Initialize the convex hull to the simplex conv(Ag441), the convex hull of the
first d + 1 points of A.

3. In the incremental step: the convex hull of conv(A;) is built knowing the
convex hull conv(A;_;) and the point A; to be inserted.

Details of the incremental step

Because of the lexicographic order on the points of .4, point A; never belongs to
the convex hull conv(A;_1), and is therefore a vertex of conv(A;). The preceding
lemmas show that the subgraph of the incidence graph of conv(A;_1) restricted
to the faces that are blue with respect to A; is also a subgraph of the incidence
graph of conv(A;). All the efficiency of the incremental algorithm stems from
the fact that the incidence graph of the current convex hull can be updated in
an incremental step without looking at the blue faces or at their incidences.

To perform this incremental step, we proceed in four phases:

8.4. A deterministic algorithm 177

Phase 1. We first identify a facet of conv(A;-1) that is red with respect to A;.

Phase 2. The red facets and the red or purple (d — 2)-faces of conv(A;_1) are
traversed. A separate list is set up for the red facets, the red (d — 2)-faces,
and the purple (d — 2)-faces.

Phase 3. Using the information gathered in phase 2, we identify all the other
red or purple faces of conv(A;_1). For each dimension k, d—3 > k > 0,
a list Ry of the red k-faces is computed, as well as a list Py of the purple
k-faces.

Phase 4. The incidence graph is updated.

Before giving all the details for each phase, let us first describe precisely the
data structure that stores the incidence graph. For each face F' of dimension k
(0 < k < d - 1) of the convex hull, this data structure stores:

e the list of the sub-faces of F', which are the faces of dimension k — 1 incident
to F,

e the list of the super-faces of F', which are the faces of dimension k + 1
incident to F,

e the color of the face (red, blue, purple) in the current step, and
e a pointer p(F') whose use will very soon be clarified.

If F' is a super-face of (G, then a bidirectional pointer links the record for F' in
the list of super-faces of G to the record for G in the list of sub-faces of F'.

Phase 1. To find an initial red facet in conv(A;_1), we take advantage of the
lexicographic order on the points in .A. Because of this order, A;_; is always
a vertex of conv(A;_1) and there is at least one facet of conv(A;—) containing
A;_1 which is red with respect to A;. Indeed, let F;,_1 be the set of facets of
conv(A;-1) that contain A;_; as a vertex. Let also H be the hyperplane whose
equation is z; = z1(4;_1), and H™ the half-space bounded by H that contains
conv(A;_1), and H~ the other half-space bounded by H. Since A;_; is a vertex of
conv(A;_1) with maximal abscissa, H* U A4;_1 contains the intersection of all the
half-spaces H; when F' € F;_;. Point A; belongs to F, and therefore cannot
belong to this intersection of half-spaces (see figure 8.6). Thus, at least one facet
F in F;_; must be red with respect to A;. All the facets of F;_; were created
at the previous incremental step, so it suffices to store the list of facets created
during an incremental step and to traverse this list during the next incremental
step in order to find an initial red facet.

Phase 2. In the second phase, we use the connectedness of the set of red
facets (lemma 8.3.3). A depth-first traversal of the subgraph of red facets in

178 Chapter 8. Incremental convez hulls

HT H H™

Figure 8.6. One of the facets of conu(.A;-1) containing A;_1 must be red with respect to A;.

the adjacency graph? of conv(A;_1), starting with the initial red facet that was
found in phase 1, visits all the facets visible from A;, which we color red, and
their (d — 2)-faces, which we color red if they are incident to two red facets, or
purple if they are incident to a blue facet. The traversal backtracks whenever the
facet encountered was already colored red, or if it is a blue facet.

Phase 3. We now know all the red and purple (d—2)-faces, and the red facets.
In this phase, all the remaining red and purple faces are colored, and their lists
are set up in order of decreasing dimensions. Assume inductively that all the red
and purple faces of dimension k' > k+1 have already been identified and colored,
and that the lists Ry and Py have already been set up. We process the k-faces in
the following way. Each sub-face of a face of Piy1 that has not yet been colored
is colored purple and added to the list Pr. Afterwards, each sub-face of Ry
that has not yet been colored is added to the list Rg.

Phase 4. To update the incidence graph, we proceed as follows. All the red
faces are removed from the incidence graph, and so are all the arcs adjacent to
these faces in the graph. The purple faces are processed in order of increasing
dimension k. If F' is a k-face purple with respect to P, a new node is created for
the (k + 1)-face conv(F U {4;}) and linked by an arc to the node for F' in the
incidence graph. Also the pointer p(F) is set to point to the new node created
for conv(F U {A;}). It remains to link this node to all the incident k-faces of
the form conv(G U {A4;}), where G is a (k — 1)-face incident to F. For each sub-
face G of F, its pointer p(G) gives a direct access to the node corresponding to
conv(G U {4;}), and the incidence arc can be created.

“The adjacency graph is already stored in the incidence graph, and need not be stored
separately (see subsection 8.1).

8.4. A deterministic algorithm 179

Analysis of the algorithm

Phase 1 of each incremental step can be carried out in time proportional to the
number of facets created at the previous step. The total cost of phase 1 over all
the incremental steps is thus dominated by the total number of facets created.

At step i that sees the insertion of A;, the cost of phase 2 is proportional to the
number of nodes visited during the traversal of the adjacency graph. The nodes
visited correspond to red facets of conv(.A;_1), and to the blue facets adjacent to
these red facets. The total cost of this phase is thus at most proportional to the
number of red facets of conv(A;_1) and of their incidences.

The cost of phase 3 is bounded by (a constant factor times) the number of
arcs in the incidence graph that are visited, and this number is the same as the
number of incidences between red or purple faces of conv(.A;—1).

Lastly, the cost of phase 4 is proportional to the total number of red faces and
of their incidences, plus the number of purple faces and of their incidences to
purple faces.

In short, when incrementally adding a point to the convex hull, the cost of
phases 2, 3, and 4 is proportional to the number of red or purple faces, plus the
number of faces incident to a red face, plus the number of incident purple faces.
Red faces and their incidences correspond to the nodes and arcs of the incidence
graph that are removed from the graph. The purple faces and the incidences
between two purple faces correspond to nodes and arcs of the incidence graph that
are added to the graph. The total cost of phases 2, 3, and 4 is thus proportional
to the number of changes undergone by the incidence graph. Since a node or arc
that is removed will not be inserted again (red faces will remain inside the convex
hull for the rest of the algorithm), this total number of changes is proportional to
the number of arcs and nodes of the incidence graph that are created throughout
the execution of the algorithm, which also takes care of the cost of phase 1. The
following lemma bounds this number.

Lemma 8.4.1 The number of faces and incidences created during the erecution
of an incremental algorithm building the conver hull of n points in d dimensions

is O(nlld+1)/2]),

Proof. Lemma 8.3.1 shows that the subgraph of the incidence graph of conv(A;)
induced by the faces created upon the insertion of A; is isomorphic to the set of
faces of conv(A;_1) that are purple with respect to A;. The number of incidences
between a new face and a purple face of conv(.A;_y) is also proportional to the
number of purple faces of conv(A;_1). Finally, lemma 8.3.4 shows that the set of
purple faces of conv(.A;_1) is isomorphic to a (d — 1)-polytope that has at most
t — 1 vertices. The upper bound theorem 7.2.5 shows that the number of these
faces and incidences between these faces, is O(il(¢=1/2]). This is thus a bound on

180 Chapter 8. Incremental convex hulls

the number of faces and incidences created upon inserting A;. Summing over all
i,1=1,...,n, the total number of facets and incidences created by the algorithm

1S:
n

Z 0 (Ld-1/2]y = o(plld+1)/2]y,
i=1

O

The storage needed by this algorithm is proportional to the maximum size of
the incidence graph stored at any step, which is O(nLd/ 2J). Taking into account
the initial sorting of the vertices, we conclude with the following result:

Theorem 8.4.2 The incremental algorithm builds the convez hull of n points in
d dimensions in time O(nlogn + nl(4tV/2) gnd storage O(nl4/2!).

This algorithm is optimal in the worst case when the dimension of the space is
even. '

8.5 On-line convex hulls

Computing the convex hull of a set of points is one of the geometric problems to
which the randomization techniques developed in chapter 5 apply. Randomized
algorithms compute the convex hull of n points in optimal expected time, in any
dimension: O(nlogn) in dimension 2 or 3, and O(nl%2!) in dimension d > 3. Let
us once again recall that the average value involved here is over all the possible
random choices of the algorithm, not over some spatial distribution of the points.
The only assumption we make on the points is that they are in general position.

The algorithm which we present here is an incremental on-line algorithm (or
semi-dynamic) that uses the influence graph method described in section 5.3, to
which we refer the reader if need be. The term “on-line” means that the algorithm
is able to maintain the convex hull of a set of points as the points are added one
by one without preliminary knowledge of the whole set. This algorithm is in fact
deterministic. Only the analysis is randomized and assumes that the order in
which the points are inserted is random.

Convex hulls in terms of objects, regions, and conflicts

This section applies the formalism described in chapter 4. In order to do so,
we must first recast the convex hull problem in terms of objects, regions, and
conflicts.

The objects are naturally the points of E¢. A region is defined as the union
of two open half-spaces. Such a region is determined by a set of d + 1 points in
general position. Let {Py, Pi,..., Py_1, P} stand for such a (d + 1)-tuple. Let
H,y be the hyperplane containing {Fp, P1,...,FP3-1} and H; be the half-space

8.5. On-line convez hulls 181

bounded by Hj; that does not contain F,;. Similarly let Hy be the hyperplane
containing {P,...,Pi—1, Py} and let Hy be the half-space bounded by Hy that
does not contain F;. The region determined by the (d + 1)-tuple is the union
of the two open half-spaces H; and H,. A point conflicts with a region if it
belongs to at least one of the two open half-spaces that make up the region. In
this case, the influence domain of a region is simply the region itself.

With this definition of regions and conflicts, the convex hull of a set S of
n affinely independent points can be described as the set of regions defined and
without conflict over S. In fact, the regions defined and without conflict over S are
in bijection with the (d—2)-faces of conv(S). Indeed, let a region be determined by
the (d+1)-tuple {Fy, Py, ..., Py_1, Py} of pointsin S. Because the points in S are
assumed to be in general position, if this region is without conflict over S, the two
d — 1 simplices Fy = conv({Fy, P1, ..., Pi_1}) and Fy = conv({P1, ..., Pi_1, Ps})
are facets of conv(S), and the (d—2)-simplex G = FoNFy = conv({Py, ..., Pz-1})
is the (d — 2)-face of conv(S) that is incident to both these facets. This region
will be denoted below by (Fy, Fy) or sometimes by (Fy, Fy). The set of regions
defined and without conflict over a set S therefore not only gives the facets of
conv(S), but also their adjacency graph. Using this information, it is an easy
exercise to build the complete incidence graph of conv(S) in time proportional
to the number of faces of all dimensions of conv(S) (see exercise 8.2).3

The algorithm

The algorithm is incremental, and in fact closely resembles that which is described
in section 8.4. The convex hull conv(S) of the current set S is represented by its
incidence graph. At each step, a new point P is inserted. The faces of conv(S)
can be sorted into three categories according to their color with respect to P,
as explained in section 8.3: red faces, blue faces, and purple faces. The on-line
algorithm, like the incremental algorithm, identifies the faces that are red and
purple with respect to P, then updates the incidence graph. The main difference
resides in the order with which the points are inserted. The on-line algorithm
processes the points in the order given by the input, and therefore cannot take
advantage of the lexicographic order to detect the red facets. For this reason, the
algorithm maintains an influence graph. As we may recall, the influence graph

%It would certainly be more natural to define a region as a open half-space determined by
d affinely independent points. In this case the region is one of the half-spaces bounded by the
hyperplane generated by these d affinely independent points, and a point conflicts with such a
region if it lies in this half-space. With these definitions, the facets of the convex hull conv(S)
of a set S of n points in E? are in bijection with the regions defined and without conflict over S.

In fact, such a definition of regions is perfectly acceptable and so is an incremental algorithm
based on these definitions (see exercise 8.5). Such an algorithm, however, does not satisfy the
update conditions 5.2.1 and 5.3.3, and its analysis calls for the notion of biregion introduced in
exercise 5.7.

182 Chapter 8. Incremental conver hulls

Figure 8.7. On-line convex hull: regions and conflicts.
The influence domain of region (AB, AC) is shaded, and the (d — 2)-faces
corresponding to regions conflicting with P are represented in bold.

is used mainly to detect the conflicts between the point to be inserted and the
regions defined and without conflict over the points inserted so far. The influence
graph is an oriented acyclic graph that has a node for each region that, at some
previous step in the algorithm, appeared as a region defined and without conflict
over the current subset of points. At each step of the algorithm, the regions
defined and without conflict over the current subset correspond to the leaves
of the influence graph. The arcs in this graph link these nodes such that the
following inclusion property is always satisfied: the influence domain of a node is
always contained in the union of the influence domains of its parents. A depth-
first traversal of the influence graph can detect all the conflicts between the new
point P and the nodes in the graph. With a knowledge of the conflicts between
points P and the regions defined and without conflict over S, it is easy to find
the facets of conv(S) that are red with respect to P. Indeed:

¢ A region defined and without conflict over S that conflicts with P corre-
sponds to a red or purple (d — 2)-face of conv(S), since it is incident to two
(d — 1)-faces of conv(S), at least one of which is red (see figure 8.7).

e A region defined and without conflict over S that does not conflict with P
corresponds to a (d — 2)-face of conv(S) that is blue with respect to P.

In an initial step, the algorithm processes the first d+ 1 points that are inserted
into the convex hull. The incidence graph is set to that of the d-simplex formed

“Recall also that we frequently identify a node in the influence graph with the region that it
corresponds to, which for instance lets us speak of conflicts with a node, of the influence domain
of a node, or of the children of a region.

8.5. On-line convez hulls 183

by these points, and the influence graph is initialized by creating a node for each
of the regions that correspond to the (d — 2)-faces of this simplex.

To describe the current step, we denote by & the current set of points already
inserted, and by P the new point that is being inserted. The current step consists
of a location phase and an update phase.

Locating. The location phase aims at detecting the regions killed by the new
point P. These are the regions defined and without conflict over S that conflict
with P. For this, the algorithm recursively visits all the nodes that conflict with
P, starting from the root.

Updating. If none of the regions defined and without conflict over S is found
to conflict with P, then P must lie inside the convex hull conv(S), and there
is nothing to update: the algorithm may proceed to the next insertion. If a
region corresponding to a (d — 2)-face of conv(S) is found to conflict with P,
however, then at least one of the two incident (d — 1)-faces is red with respect to
P. Starting from this red face, the incidence graph of conv(S) can be updated
into that of conv(S U {P}) by executing phases 2, 3, and 4 of the incremental
algorithm described above in section 8.4.

Its remains to show how to update the influence graph. Let us recall that
the nodes of the influence graph are in bijection with the (d — 2)-faces of the
successive convex hulls, and that the corresponding regions are determined by a
pair of adjacent facets, or also by the d + 1 vertices that belong to these facets.
To update the influence graph, the algorithm considers in turn each of the purple
(d — 2)-faces of conv(S), and each of the (d — 3)-faces incident to these faces.

1. Consider a (d — 2)-face G of conv(S) that is purple with respect to P, and
let (F1, F]) be the corresponding region; £ and F} are two (d—1)-faces of conv(S)
that are incident to G;1. We may assume that F is blue with respect to P and FJ is
red (see figure 8.8). The face G is a (d—2)-face of conv(SU{P}) that corresponds
to the new region (', FY'), where FY' is the convex hull conv(G1 U {P}). A new
node of the influence graph is created for region (F7, F{’) and this node is hooked
into the influence graph as the child of (Fy, 7). In this way, the inclusion property
is satisfied. Indeed, let H; and H; be the hyperplanes supporting conv(S) along
Fy and Fj, respectively. The hyperplane H{ supporting conv(S U {P}) along
F{' is also a hyperplane supporting conv(S) along G;. As a consequence, the
half-space H™ that does not contain conv(S U {P}) is contained in the union
of the half-spaces H; and H’{, which do not contain conv(S). The influence
domain of region (Fi, FY') is therefore contained within that of (Fi, F).

2. Let K be a (d— 3)-face of conv(S), purple with respect to P, and let G and
G2 be the purple (d — 2)-faces of conv(S) that are incident to K.° Let (Fy, F})
and (Fg, F3) be the two regions corresponding to G and G, the faces F} and Fy

5The set of purple faces of conv(S) being isomorphic to a (d — 1)-polytope (lemma 8.3.4),
any purple (d — 3)-face of conv(S) is incident to exactly two purple (d— 2)-faces (theorem 7.1.7).

184 Chapter 8. Incremental convexr hulls

Figure 8.8. On-line convex hull: new regions when inserting a point P.

being blue with respect to P while faces F] and F} are red (see figure 8.8). The
convex hull conv(K U {P}) is a (d — 2)-face of conv(S U {P}), and is incident
to the (d — 1)-faces F|' = conv(G1 U {P}) and F} = conv(Gs U {P})). In the
influence graph, a new node is created for the region (F}, F4), and hooked into
the graph to two parents which are the nodes corresponding to regions (F, F{)
and (Fy, Fj). Let us verify that the inclusion property is satisfied. Indeed, the
influence domain of (F, FY) is the union H, ~UHY ™, where H'™ (resp. H} ™) is
the half-space bounded by hyperplane H{ (resp. H) that supports conv{SU{P})
along F{' (resp. F}) and does not contain conv(S U{P}). The half-space H{~
is contained in the the influence domain of region (Fi, F{), and similarly Hj ™
is contained in the influence domain of (Fy, F3). Consequently, the influence
domain of (F}', Fy') is contained in the union of the influence domains of (F, F})
and (Fy, F)).

This description can be carried over almost verbatim to the case of dimension 2.
We need only remember that the polytope conv(S) has an empty face of dimen-
sion —1, incident to all of its vertices. If P is not contained within conv(S), the

empty face is purple and incident to the two purple vertices of conv{S) (see also
figure 8.9).

8.5. On-line convex hulls 185

FII
FY

G2

Figure 8.9. On-line convex hull in two dimensions.

Randomized analysis of the algorithm

In this randomized analysis, we assume that the points are inserted in a random
order. The performances of the algorithm are then estimated on the average,
assuming that all n! permutations are equally likely.

To apply the results in chapter 5, we must verify that the algorithm satisfies
the update condition 5.3.3 for algorithms that use an influence graph.

1. Testing conflict between a point and a region boils down to testing whether
a point belongs to two half-spaces, and can be performed in constant time.

2. The number of children of each node in the influence graph is bounded.
In fact, each node has d children, or none. Indeed, when inserting a point
P, the node corresponding to a purple (d — 2)-face G of conv(S) receives d
children: one for the (d—2) face G of conv(SU{P}), and d—1 corresponding
to conv(KU{P}) for each (d—3)-subface K of G. The nodes corresponding
to red or blue (d — 2)-faces of conv(S) do not receive children. The nodes
corresponding to the red or purple (d — 2)-faces of conu(S) are killed by P:
they no longer correspond to regions without conflict and will not receive
children after the insertion of P.

3. The parents of a region created by a point P are recruited among the regions
killed by P. From the analysis of phases 2, 3, and 4 of the incremental step
in section 8.4, we can deduce that updating the incidence graph takes time
proportional to the total number of red and purple faces of conv(S) and
of their incidences. If every (d — 2)-face of the convex hull is linked by a
bidirectional pointer with the corresponding node in the influence graph,
it is easy to see that updating the influence graph takes about the same
time as updating the incidence graph. The set of points being in general
position, the facets of conv(S) are simplices; thus the number of red or
purple faces and of their incidences is proportional to the number of red
facets of conv(S). Each of these red facets is incident to d — 1 red or purple

186 Chapter 8. Incremental conver hulls

(d—2)-faces of conu(S), each of which corresponds to a region that conflicts
with P. Each region defined and without conflict over § that conflicts with
P corresponds to a (d — 2)-face of conv(S) that is incident to one or two red
facets. As a result, the number of red facets of conv(S), and therefore the
complexity of the update phase, is proportional to the number of regions
killed by the new point P.

Since the update conditions are satisfied, the randomized analysis of the on-line
convex hull computation can now be established readily by theorem 5.3.4 which
analyzes algorithms that use an influence graph. The number of regions without
conflict defined over a set S of n points in a d-dimensional space is exactly the
number of (d — 2)-faces of the convex hull conv(S), which is O(nl¥2)) according
to the upper bound theorem 7.2.5.

Theorem 8.5.1 An on-line algorithm that uses the influence graph method
to build the convex hull of n points in d dimensions requires expected time
O(nlogn + nld/ 2J), and storage O(nLd/ 2J). The expected time required to per-
form the n-th insertion is O(logn + nl#/21-1),

8.6 Dynamic convex hulls

The previous section shows that it is possible to build on-line the convex hull of
a set of points in optimal expected time and storage, using an influence graph.
Such an algorithm is called semi-dynamic, since it can handle insertions of new
points. Fully dynamic algorithms, however, handle not only insertions but also
deletions.

The possibility of deleting points makes the task of maintaining the convex hull
much more complex. Indeed, during an insertion, the current convex hull and
the new point entirely determine the new convex hull. After a deletion, however,
points that were hidden inside the convex hull may appear as vertices of the new
convex hull. A fully dynamic algorithm must keep, in one way or another, some
information for all the points in the current set, be they vertices of the current
convex hull or not.

The goal of this section is to show that the augmented influence graph method
described in chapter 6 allows the convex hull to be maintained dynamically.

The algorithm which we now present uses again the notions of objects, regions,
and conflicts as defined in the preceding section. It conforms to the general
scheme of dynamic algorithms described in chapter 6, to which the reader is
referred should the need arise. Besides the current convex hull (described by the
incidence graph of its faces), the algorithm maintains an augmented influence
graph whose nodes correspond to regions defined over the current set. After

8.6. Dynamic conver hulls 187

each deletion, the structure is rebuilt into the exact state it would have been in,
had the deleted point never been inserted. Consequently, the augmented influence
graph only depends on the sequence ¥ = {Py, Py, ..., Py} of points in the current
set, sorted by chronological order: F; occurs before P; if the last insertion of F;
occurred before the last insertion of P;.

Let us denote by Za(X) the augmented influence graph obtained for the chrono-
logical sequence X. The nodes and arcs of Za(X) are exactly the same as those of
the influence graph built by the incremental algorithm of the preceding section,
when the objects are inserted in the order given by ¥. We denote by §; the
subset of S formed by the first [objects in ¥. The nodes of Za(X) correspond
to the regions defined and without conflict over the subsets S;, for { = 1,...,n.
The arcs of Za(X) ensure both inclusion properties: that the domain of influence
of a node is contained in the union of the domains of influence of its parents, and
that a determinant of this node is either the creator of this node or is contained
in the union of the sets of determinants of its parents. Moreover, the augmented
influence graph contains a conflict graph between the regions that correspond
to nodes in the influence graph, and the objects in &. This conflict graph is
implemented by a system of interconnected lists such as that described in sec-
tion 6.2: each node of the conflict graph has a list (sorted in chronological order)
of the objects that conflict with the corresponding region; also, for each object
we maintain a list of pointers to the nodes in the influence graph that conflict
with that object. The record corresponding to an object in the conflict list of a
node is interconnected with the record corresponding to that node in the conflict
list of the object.

Insertion

Inserting the n-th point into the convex hull is carried out exactly as in the on-line
algorithm described in section 8.5, except that while we are locating the object in
the influence graph, each detected conflict is added to the interconnected conflict
lists.

Deletion

Let us now consider the deletion of point Pg. For [= k,...,n, we denote by S
the subset S;\ {P:} of S, and by ¥’ the chronological sequence {Py,..., P;_1,
Pgy1,... Py}. When deleting Py, the algorithm rebuilds the augmented influence
graph, resulting in Za(X'). For this, we must:
1. remove from the graph Za(X) the destroyed nodes, which correspond to
regions having P, as a determinant,®

®Recall that an object is a determinant of a region if it belongs to the set of objects that
determine this region.

188 Chapter 8. Incremental convex hulls

12’

Figure 8.10. Convex hull: creator and killer of a region.
Points are numbered by chronological ranks. Unnumbered points have rank
greater than 12. Region (61,64) has point 6 as its creator and point 12 as its
killer.

2. create a new node for each region defined and without conflict over one of
the subsets S}, [=k + 1,...,n that conflicts with P,

3. set up the new arcs that are incident to the new nodes. The new nodes must
be hooked to their parents which may or may not be new. The unhooked
nodes, which are nodes of Za(X) that are not destroyed but have destroyed
parents, must be rehooked.

Before we describe the deletion algorithm, it is useful to recall a few definitions.
A region G of ZTa(X) is created by P, or also P, is the creator of G, if P, is among
all determinants of G the one with highest chronological rank. A region G of
Za(X) is killed by P, or also P, is the killer of G if P, has the lowest rank among
the points that conflict with G (see figure 8.10).

The deletion algorithm proceeds in two substeps: the location phase and the
rebuilding phase.

Locating. During this phase, the algorithm identifies the nodes in Za(X) that
are killed by P, and the destroyed and unhooked nodes. For this, the algorithm
recursively visits all the nodes that conflict with Pj or have Py as a determinant,
starting at the root. During the traversal, the algorithm removes Py from the
conflict lists, and builds a dictionary of the destroyed or unhooked nodes for use
during the rebuilding phase.

Rebuilding. During this phase, the algorithm creates the new nodes, hooks
them to the graph, builds their conflict lists and rehooks the unhooked nodes.

For this, the algorithm considers in turn all the objects P, of rank | > k that
are the creators of some new or unhooked node. A point F; of rank [> k is the

8.6. Dynamic convex hulls 189

creator of some new or unhooked node if and only if there exists a region defined
and without conflict over S]_; which conflicts with both P, and Py (lemma 6.2.1).
When processing P;, we call a region critical if it is defined and without conflict
over S;_l but conflicts with Py. The critical zone is the set of all critical regions.
The critical zone evolves as we consider the objects P, in turn. At the beginning
of the rebuilding phase, the critical regions are the regions of Za(X) that are
killed by Pj. Subsequently, the critical regions are either regions in Za(X) that
are killed by Py, or new regions in Za(X'). At each substep in the rebuilding
phase, the next point to be processed is the point of smallest rank among all the
points that conflict with one or more of the currently critical regions. To find
this point, the algorithm maintains a priority queue Q of the points in ¥/ that
are the killers of critical regions. Each point P, in Q also stores the list of the
current critical regions that it kills. The priority queue @ is initialized with the
killers in ¥’ of the regions in Za(X) that were killed by Pj.

At each substep in the rebuilding phase, the algorithm extracts the point P; of
smallest rank in @, and this point is then reinserted into the data structure. To
reinsert a point means to create new nodes for the new regions created by Fj, to
hook them to the influence graph, and to rehook the unhooked nodes created by
P,. The (d—2)-faces of conv(S]_,) that are red or purple with respect to the point
P, that is removed correspond to critical regions and are, below, called critical
faces. Unless explicitly stated, the color blue, red, or purple, is now given with
respect to the point P, that is being reinserted. The regions that are unhooked
or new and created by P, can be derived from the critical purple (d — 2)-faces
and their (d — 3)-subfaces, which will be considered in turn by the algorithm.

1. Processing the critical purple (d — 2)-faces

Along with point P;, we know the list of critical regions with which it conflicts.
These regions correspond to the critical red or purple (d — 2)-faces, and a linear
traversal of this list allows the sublist of its critical purple (d — 2)-faces to be
extracted.

Let G be a critical purple (d — 2)-face, and (F, F’) be the corresponding region;
F and F' are (d— 1)-faces of conv(S]_;), both incident to G, and we may assume
that F' is blue with respect to P, while F” is red (see figure 8.11 in dimension 3
and figure 8.12 in dimension 2.)

In the convex hull conv(S)), G is a (d — 2)-face that corresponds to (F, F"), a
region defined and without conflict over S;, where F” is the convex hull
conv(G U {B,}) (see figure 8.11 in dimension 3 and figure 8.12 in dimension 2.)

If region (F, F") conflicts with Pj (see figures 8.11a and 8.12a), then it is a new
region created by F;. In the augmented influence graph, a new node is created
for this region, with node (F, F’) as parent. The conflict list of (F, F”) can be

190 Chapter 8. Incremental convexr hulls

.‘I)l .})l

Py P,

{(a) (b)

Figure 8.11. Deleting from a 3-dimensional convex hull: handling critical purple (d — 2)-
faces.
(a) (F, F") is a new region.
(b) (F,F") is an unhooked region.

set up by selecting the objects in conflict with (F, F"') from the conflict list of
(F, F"). The killer of (F, F"') in ¥’ is inserted in the priority queue Q if it was not
found there. Finally, region (F, F") is added to the list of critical regions killed
by this point.

If region (F, F") does not conflict with P (see figures 8.11b and 8.12b), then it
corresponds to an unhooked node created by F;. This node is found by using the
dictionary D of destroyed and unhooked nodes, and hooked as a child of (F, F').

2. Handling the critical purple (d — 3)-faces

Critical purple (d — 3)-faces are subfaces of critical purple (d — 2)-faces.” For
each such (d — 3)-face, we must know the at most two critical purple (d — 2)-faces
incident to it. To find them, we build an auxiliary dictionary D’ of the (d — 3)-
subfaces of critical purple (d — 2)-faces. Each entry in the dictionary D’ for a

7 According to lemma 8.3.4, each critical purple (d — 3)-face is incident to two purple (d—2)-
faces, at least one of which is critical.

8.6. Dynamic convex hulls 191

(b)

Figure 8.12. Deleting from a 2-dimensional convex hull: handling critical purple (d — 2)-
faces.
(a) (F, F") is a new region.
(b) (F,F") is an unhooked region.

(d—3)-face K has two pointers for keeping track of the critical purple (d—2)-faces
incident to K.

Let K be such a (d — 3)-face (see figure 8.13 in dimension 3 and figure 8.14 in
dimension 2). We denote by G and G2 the two purple (d — 2)-faces incident to
K. At least one of them is a critical face, but not always both. We denote by
(F1, F}) and (F», Fy) the regions corresponding to faces G and Gy of the convex
hull conv(S)_;). We may assume that facets F; and Fy are blue, while F] and
F} are red.

The (d—2)-face conv(KU{P;}) of conv(S]) corresponds to some region (Fy', F}),
where F}' = conv(G1 U {P}) and FJ = conv(Ga U {P;}) (see figure 8.13; see also
figure 8.14, in dimension 2, in which K is the empty face of dimension —1, and
G1 and G are the two vertices of conv(S;_;), both purple with respect to F}).

2.a If both G; and Gy are critical faces, the corresponding nodes in Za(X')
may be retrieved through dictionary 7.

2.a.1 If region (FY, Fy') conflicts with Py (see figure 8.14a), it is a new region
created by Pj; a node is created for this region, and inserted into the influence
graph with both (Fy, F]) and (Fj, F}) as parents. The conflict list of (F}, Fy')
may be obtained by merging the conflict lists of (Fy, F}) and (Fy, F}), and then
selecting from the resulting list the objects that conflict with (F}', F4). Merging
the conflict lists can be carried out in time proportional to the total length,
because these lists are ordered chronologically.® The killer of (FY, F}) in the
sequence X' is inserted into the priority queue @ if not found there, and region
(FY, Fy) is added to the list of critical regions killed by this point.

8 An alternative to this solution is to forget about ordering the conflict lists and to resort to

192 Chapter 8. Incremental convex hulls

-P!

GEDENCE)
@&y @y @R

Figure 8.13. Deleting from a 3-dimensional convex hull: handling critical purple (d — 3)-
faces.

2.a.2 If region (F{, F4) does not conflict with Py (see figure 8.14b), then this
region is an unhooked region created by P,. It suffices to find the corresponding
node using dictionary D and hook it back to the nodes corresponding to (Fi, FY)
and (Fy, F3).

2.b When only one of the purple (d — 2)-faces G; and (3 incident to K is
critical, say G, the algorithm must find in the influence graph the node cor-
responding to G, the other purple (d — 2)-face incident to K. Lemma 3.6.1
below proves that, in this case, conv(K, P)) is a (d — 2)-face of conv(S;) which
corresponds to a destroyed or unhooked node of Za(X), whose parents include
precisely the node corresponding to region (F2, Fj). To find (F», Fj), we may
therefore search in the dictionary D of destroyed or unhooked nodes, created
by P, corresponding to the (d — 2)-face conv(K, F;) of conv(S;). This node is
uniquely known from this criterion, because we know not only the (d — 2)-face
conv(K, P}) of its corresponding region, but also its creator Fj.

Lemma 8.6.1 Let K be a (d — 3)-face of conv(S]_,) incident to two purple
faces G1 and Go, only one of which is critical, say Gy. Then conv(K,P)) is a

the method used in section 6.4 for merging the conflicts lists of trapezoids.

8.6. Dynamic conver hulls 193

Figure 8.14. Deleting from a 2-dimensional convex hull: handling the critical purple (d—3)-
faces. Critical purple (d — 3)-face K here is the empty face of dimension —1.
(1 and G2 are its two purple vertices.
(a) G1 and G are critical, (FY', Fy') is new.
(b) G: and G- are critical, (F}’, F3) is unhooked.
(c) G is critical, G2 is not, and G is not a face of conv(S;_1).
(d} G, is critical, G2 is not, and Gy is a face of conv(S;—1), but not purple
with respect to F.
(e) Gi is critical, G2 is not, and G, is a face of conv(Si—1), this time purple
with respect to Pj.

(d—2)-face of conv(S;), its corresponding node in Za(X) is destroyed or unhooked,
and one of its parents is the region (Fu, Fy) that corresponds to the face G of
conv(S;_;)-

Proof. For the proof, imagine that Py then P, are inserted into S}_;: then we
obtain successively &; 1 and ;.

The (d — 2)-face K of conv(S]_;) is purple with respect to P since it belongs
to a critical (d — 2)-face as well as to a non-critical (d — 2)-face. As a result, both
K and conv(K, Py) are faces of conv(S;—1). _

Since it is not critical, the (d — 2)-face G is also a (d — 2)-face of conv(S;_1),
and its corresponding region is still (Fy, F3), hence face G of conv(S;_1) is purple
with respect to .

194 Chapter 8. Incremental convex hulls

The (d—3)-face K of conv(8;-1) is purple with respect to P; since it is incident
to G2. As a result, conv(K,F)) is a (d — 2)-face of conv(S;), incident to the
(d — 1)-face conv(Ge, P;). In the graph Za(X), one of the parents of the node
corresponding to the (d — 2)-face conv(K, P;) of conv(S)), is region (Fy, F3).

We now have to show that the (d — 2)-face conv(K, P;) of conv(S;) corresponds
to a region that is either destroyed or unhooked when P is deleted. For this, we
consider the face G; of conv(S;_;). The situation is one of three (see figure 8.14c,
d, e). If this face is red with respect to Py (see figure 8.14c), then it is not a face
of conv(8;-1) any more. If this face is purple with respect to Py, it remains a
face of conv(S;-1), but it may be blue (see figure 8.14d) or remain purple (see
figure 8.14e) with respect to Fj.

In the first two cases, conv(K, Py) is necessarily a (d — 2)-face of conv(S;_1),
purple with respect to Fj;. Indeed, the set of those purple faces is isomorphic
to a (d — 1)-polytope, and since G is not purple with respect to P, it must be
replaced by another (d — 2)-face incident to K which can only be conv(K, Py).
Consequently, the region corresponding to the (d—2)-face conv(K, P;) of conv(8;)
is region (conv(K, P, Py),) which is destroyed during the deletion of P.

In the third case, F{' = conv(G1, P;) must be a facet of conv(S)), and the region
that corresponds to the (d — 2)-face conv(K, P;) of conv(S;) is region (F}, FY),
which is an unhooked region created by P,. 0

Once the node corresponding to the (d—2)-face G of conv(S}) has been found,
operations can resume as before, apart from a simple detail. If the region (F}', F¥)
that corresponds to the (d—2)-face conv(K, P;) of conv(S)) is new, then its conflict
list may be obtained by merging that of the critical region (F7, F]) and that of the
destroyed region (conv(K, P, Py), Fy). (We do this in order to avoid traversing
the conflict list of region (F», F3) corresponding to face G, which is neither new
nor destroyed.)

Randomized analysis of the algorithm

The algorithm is deterministic. Yet the analysis given here is randomized and
assumes the following probabilistic model:

e the chronological sequence X is a random sequence, each of the n! permu-
tations being equally likely;

e each insertion concerns, with equal probability, any of the objects present
in the current set immediately after the insertion;

e each deletion concerns, with equal probability, any of the objects present
in the current set immediately before the deletion.

8.7. FEzxercises 195

Theorem 8.6.2 Using an augmented influence graph allows the fully dynamic
maintenance of the convez hull of points in B, under insertion or deletion of
points. If the current set has n points:

e the structure requires expected storage O(nlogn + nLd/QJ),
e inserting a point takes expected time O(logn 4 nl¥/2~1),

o deleting a point takes expected time O(logn) in dimension 2 or 8 and time
O(tnld/2J—1) in dimension d > 3. The parametert represents the complezity
of an operation on the dictionaries used by the algorithm (t = O(logn) if
balanced binary trees are used, t = O(1) if perfect dynamic hashing is used.)

Proof. During the rebuilding phase in a deletion, the number of queries into the
dictionary of destroyed or unhooked nodes is at most proportional to the number
of destroyed or unhooked nodes. For each point P; that is reinserted, the number
of updates or queries on the dictionary of (d — 3)-faces incident to critical purple
(d — 2)-faces is proportional to the number of these critical purple (d — 3)-faces.
Thus, the total number of accesses to the dictionaries is proportional to the total
number of critical faces encountered that correspond to new or killed nodes. The
conflict lists of new nodes can be set up in time at most proportional to the total
sizes of the conflict lists of new or killed nodes. All the other operations performed
during a deletion, except handling the priority queue, take constant time, and
their number is proportional to the number of destroyed, new, or unhooked nodes.

As a result, the algorithm indeed satisfies the update condition 6.3.5 for algo-
rithms that use an augmented conflict graph. Its randomized analysis is therefore
the same as in section 6.3, and is given in theorem 6.3.6 in terms of fy(l,S), the
expected number of regions defined and without conflict over a random Il-sample
of §. For the case of convex hulls, since the number of such regions for any sample
is bounded in the worst case by O(Il%/2]) (upper bound theorem 7.2.5), so is their
expectation fo(l,S). This results in the performance given in the statement of
theorem 6.3.6. In dimension 2 or 3, the number of operations to be performed on
the dictionaries and on the priority queue is O(1) whereas handling the conflict
lists always takes O(logn) time. Therefore, it suffices to implement dictionar-
ies and priority queues with balanced binary trees. In dimensions higher than
3, deletions have supra-linear compiexity, and the priority queue may be imple-
mented using a simple array. O

8.7 Exercises

Exercise 8.1 (Extreme points) Extreme points in a set of points are those which are
vertices of the convex hull. Show that to determine the extreme points of n points in E?
is a problem of complexity ©(nlogn).

196 Chapter 8. Incremental convex hulls

Hint: You may use the notion of an algebraic decision tree: an algebraic tree of degree a
is a decision tree where the test at any node evaluates the sign of some algebraic function
of degree a for the inputs. Loosely stated, a result by Ben-Or (see also subsection 1.2.2)
says that any algebraic decision tree that decides whether a point in E* belongs to some
connected component W of EF must have a height h = Q(log (W) — k), where c¢(W) is
the number of connected components of W.

Exercise 8.2 (Adjacency graph) Let a simplicial d-polytope be defined as the convex
hull of n points. Show that knowledge of the facets of the graph (given by their vertices),
along with their adjacencies, suffices to reconstruct the whole incidence graph of the
polytope in time linear in the size of the adjacency graph, which is O(nl%/2}).

Exercise 8.3 (1-skeleton) This problem is the dual version of its predecessor. Let a
simple d-polytope be defined as the intersection of n half-spaces. Suppose that the 1-
skeleton is known, that is the set of its vertices and the arcs joining them. Each vertex
is given as the intersection of d bounding hyperplanes. Show that the whole incidence
graph of the polytope may be reconstructed in time O(nl4/2!).

Exercise 8.4 (Degenerate cases) Generalize the incremental algorithm described in
section 8.4 to build the convex hull of a set of points which is not assumed to be in
general position.

Exercise 8.5 {On-line convex hulls) Give an algorithm to compute on-line the con-
vex hull of a set of points in IEd, by using an influence graph whose nodes correspond to
regions which are half-spaces. Give the randomized analysis of this algorithm.

Hint: Each region, or half-space, is now determined by a subset of d affinely independent
points that generates its bounding hyperplane. A point conflicts with a half-space if it
lies inside. The regions defined and without conflict over a set S are in bijection with
the facets, or (d — 1)-faces, of the convex hull conv(S) of S.

Upon inserting a point P into S, the regions killed by P correspond to the facets of
conv(S) that are red with respect to P, and the regions created by P correspond to the
facets conv(G U P) of conv(S U P) where G is any (d — 2)-face of conv(S) that is purple
with respect to P.

1. Let Fy and F be the facets of conv(S) incident to a (d — 2)-face G, which is purple
with respect to P. Show that the node of the influence graph that corresponds to the
facet conv{G U P) must have both nodes corresponding to F; and F3 as parents.

2. In this manner, a node in the graph may receive a child without being killed,
therefore the number of children of a node is not bounded any more. The maximum
number of parents is two, however. For this particular problem, define and use the
notion of a biregion that was introduced in exercise 5.7, and show that the expected
complexity of the algorithm is O(nlogn + nl%)).

Exercise 8.6 (Intersection of half-spaces) Give a randomized incremental algorithm
that uses a conflict graph to build the intersection of n half-spaces in E¢ whose bound-
ing hyperplanes are in general position. Try to achieve an expected running time of

8.8. Bibliographical notes 197

O(nlogn + nl#]). Give an on-line version of the preceding algorithm that uses an influ-
ence graph.

Show that in the version of the algorithm that uses a conflict graph, the storage
requirements may be lowered if only one conflict is stored for each half-space.

Hint: Objects are half-spaces, regions are segments. A segment is determined by d + 1
half-spaces, or rather by the d + 1 hyperplanes which bound these half-spaces. The line
that supports the segment is the intersection of d—1 hyperplanes, and the endpoints of the
segment are the intersections of this line with the two remaining hyperplanes. A segment
conflicts with a half-space if it has an intersection with the (open) complementary half-
space. The segments defined and without conflict over these half-spaces are precisely the
edges of the polytope, obtained as the intersection of the half-spaces.

When a new half-space HT bounded by a hyperplane H is inserted, the conflict graph
identifies all the edges that lie in H~, which disappear, and those that intersect H. An
edge E that intersects H gives a shorter edge E' C E, and the conflict list of E’ is set
up by traversing that of . To obtain the new edges that lie in H, it suffices to follow,
for each 2-face F' incident to each edge E that intersects H, the edges of F' that conflict
with HT until the second edge E' of F that intersects H is found. The new edge FN H
has vertices EN H and E'N H. Its conflict list can be obtained by traversing the conflict
lists of the edges of F killed by H+. Knowing the 1-skeleton, the whole incidence graph
of the intersection may be updated.

8.8 Bibliographical notes

The incremental deterministic convex hull algorithm described in section 8.4 is due to
Seidel [201]. This algorithm is also described in detail in Edelsbrunner’s book [89] where
degenerate cases are also handled (see exercise 8.4).

The first randomized algorithm to build convex hulls was due to Clarkson and Shor [71].
This algorithm uses a conflict graph and in fact solves the dual problem of computing
the intersection of half-spaces (see exercise 8.6). The on-line algorithm that uses an
influence graph is due to Boissonnat, Devillers, Teillaud, Schott and Yvinec [28]. The
dynamic algorithm presented in section 8.6 is due to Dobrindt and Yvinec [86]. Clark-
son, Mehlhorn, and Seidel [70] and independently Mulmuley [176, 177] proposed similar
solutions for dynamically maintaining convex hulls.

Chazelle [46] proposed a deterministic algorithm that is optimal in any dimension
greater than 3. This algorithm is a derandomized incremental algorithm, and uses the
method of conditional probabilities to determine which point must be inserted next.
Brénnimann, Chazelle, and Matousek [36] and Bronnimann [35] give a simpler version
which works in any dimension.

The lower bound proposed in exercise 8.1 to identify the extreme points in a set of
points in the plane is due to Yao [220]. The solution to exercise 8.1 can be found in the
book by Preparata and Shamos [192].

