Chapter 15

Arrangements of line segments
in the plane

In an arrangement of n lines in the plane, all the cells are convex and thus have
complexity O(n). Moreover, given a point A, the cell in the arrangement that
contains A can be computed in time ©(nlogn): indeed, the problem reduces to
computing the intersection of n half-planes bounded by the lines and containing
A (see theorem 7.1.10).

In this chapter, we study arrangements of line segments in the plane. Consider
a set S of n line segments in the plane. The arrangement of S includes cells,
edges, and vertices of the planar subdivision of the plane induced by S, and their
incidence relationships.

Computing the arrangement of S can be achieved in time O(nlog n+k&) where &
is the number of intersection points (see sections 3.3 and 5.3.2, and theorem 5.2.5).
All the pairs of segments may intersect, so in the worst case we have k = (n?).

For a few applications, only a cell in this arrangement is needed. This is notably
the case in robotics, for a polygonal robot moving amidst polygonal obstacles by
translation (see exercise 15.6). The reachable positions are characterized by lying
in a single cell of the arrangement of those line segments that correspond to the
set of positions of the robot when a vertex of the robot slides along the edge of
an obstacle, or when the edge of a robot maintains contact with an obstacle at a
point. Since the robot may not cross over an obstacle, it is constrained in always
lying inside the same cell of this arrangement. It is therefore important to bound
the complexity of such a cell and to avoid computing the whole arrangement.
Among the cells of A(S), a few contain the endpoints of some segments, and the
others do not. The latter are naturally convex cells, their complexity is O(n) and
each can be computed in time O(nlogn). The complexity of the former cells,
however, is more difficult to analyze.

15.1. Faces in an arrangement 353

To conduct the combinatorial analysis, we introduce and study a certain class
of words over a finite alphabet, the so-called Davenport—Schinzel sequences (see
section 15.2). These words have a geometric interpretation that is both illumi-
nating and useful: lower envelopes of functions (see section 15.3). Section 15.4
bounds the complexity of a cell and gives an algorithm that computes it. We
first show that this complexity is almost linear, in contrast with the entire ar-
rangement which may have §2(n?) edges in the worst case. The complexity of
the algorithm is shown to be roughly proportional to the complexity of the cell
it computes.

15.1 Faces in an arrangement

Let S be a set of n segments in the plane. To define a cell of their arrangement,
we need to distinguish the two sides of a segment, or equivalently to consider that
each line segment is a flat rectangle with an infinitesimally small width. The ar-
rangement of S is formed by cells, edges, and vertices of the planar subdivision
induced by &, and their incidence relationships. More precisely, the connected
components of E?\ S are polygonal regions that may have holes (see figure 15.1):
the cells of the arrangement are formed by the topological closures of these re-
gions. The edges and vertices of this arrangement are the edges and vertices of
the polygons that bound the cell. The arrangement of § will be denoted by A(S).

15.2 Davenport—Schinzel sequences

Given an alphabet with n symbols, a word on this alphabet is an ordered sequence
of symbols in this alphabet, and a subsequence of a word wu;...u, is a word
Ui, - - - uj, for some indices 1 < 4y < -+ < 4 < n. Given two symbols a and b,
an alternating sequence of length s is a sequence u; . .. us such that u; = a if ¢ is
odd and u; = b is i is even. An (n, s)- Davenport-Schinzel sequence is a word on
an alphabet with n symbols such that:

1. Two successive symbols of this word are distinct.

2. For each two symbols a, b in the alphabet, the alternating sequence of length
s + 2 is not a subsequence of this word.

In other words, no two symbols can alternate more than s + 1 times.

So consider the phrase ‘A DAVENPORT-SCHINZEL SEQUENCE’,
considered as a word over the Roman alphabet. The reader will easily verify
that the longest alternating subsequence over two symbols is the subsequence

354 Chapter 15. Arrangements of line segments in the plane

NoA

Figure 15.1. A cell in the arrangement of line segments.

‘ESESE’ (the other subsequences ‘ENENE’ and ‘ECECE’ are also suitable).
The sequence ‘A DAVENPORT-SCHINZEL SEQUENCE’ is thus a
(26, 4)-Davenport—Schinzel sequence!

Denote by As(n) the maximal length of an (n, s)-Davenport-Schinzel sequence.
First of all, it is not even clear that As(n) is finite. In fact, it can be deduced from

the connection with lower envelopes (see section 15.3) that Agy(n) < Sn(—g_l—) + 1.
The following theorem gives more precise bounds on A1, A2, and As.

Theorem 15.2.1 The mazimal length As(n) of an (n, s)- Davenport—Schmzel se-
quence 13 bounded by:

Ai(n) = n
A2(n) = 2n-1
As(n) = O(na(n))

where a(n) is the very slow-growing inverse of Ackermann’s function.!

Proof. The proof for s = 1 is trivial, since each symbol may appear only once.
For s = 2, we proceed by induction on n. The result is true for n = 1, so we
consider an (n,2)-Davenport—Schinzel sequence (n > 1). Let a be its first letter,

!The definitions and order of magnitude of the inverse Ackermann function are given in
subsection 1.1.3.

15.8. The lower envelope of a set of functions 355

and put S = a§’. If a does not occur in §’, then the induction applies for $’ and

S0
[S|=1+|58<1+2(n-1)—-1=2n-2.

Otherwise we can write S = @S1aS2, where a does not occur in S; and |S;| > 0.
If Sy is empty the length of aSia is smaller than (2n —2) 4+ 1 = 2n — 1, as
we have just shown. Otherwise, let k be the number of distinct symbols in S;.
By induction, |S1| < 2k — 1. Moreover, the definition of a Davenport—Schinzel
sequence ensures that no symbol b occurs both in S; and S2, otherwise abab is
a subsequence of S. Thus aS> may contain at most n — k symbols (note that a
may occur in S3), and by induction we have [aS2| < 2(n — k) — 1. Hence

IS = |S1] + |aS2| +1 < 2n— 1.

To finish the proof for s = 2, we must also show that this bound is exact. This can
be readily seen by considering the sequence abjabsa . ..ab,_1a of length 2n — 1.

For s = 3, the proof goes into very technical details, so we will not prove the
announced result here. We can show, however, the simpler result that Az(n) =
O(nlogn). Let S be a (n,3)-Davenport-Schinzel sequence, and S(a) be the
subsequence obtained from S by removing all the occurrences of a symbol a. In
S(a), there cannot be a subsequence bebeb and identical consecutive symbols can
happen at most twice when the first and the last occurrences of a are surrounded
by two b’s. Let us call S’(a) the sequence obtained by replacing in S(a) two
consecutive symbols b by a single b, whenever this happens. Then S’(a) is an
(n — 1, 3)-Davenport-Schinzel sequence, and

1S| < 18" (@) +2+n, < Xs(n—1)+2+n,

where n, stands for the number of occurrences of @ in §. Summing over all the
symbols a appearing in S, we obtain:

n|S| < niz(n —1) +2n + |S|.

This is true for any sequence S, so that
Az(n) < Az(n—1) T 2

n n—1 n—1
whence A3(n) = O(nlogn). O

15.3 The lower envelope of a set of functions

Consider n continuous functions fi(z),i = 1,...,n defined over R. The lower
envelope of the f;’s is the graph of the function defined by

(@) = min £(z).

356 Chapter 15. Arrangements of line segments in the plane

fi fa f1 f2 h

Figure 15.2. The lower envelope of a set of functions, and the corresponding Davenport—
Schinzel sequence.

The lower envelope is formed by a sequence of curved edges, where each edge is
a maximal connected subset of the envelope that belongs to the graph of a single
function f;(x). The endpoints of these edges are located at the intersections of
the graphs of the functions and are called the vertices of the envelope.

15.3.1 Complexity

Labeling each edge by the index of the corresponding function, we obtain a se-
quence of indices by enumerating these labels in the order in which they appear
along the envelope (see figure 15.2). If the graphs of the functions have pairwise
at most s intersection points, then this sequence is an (n, s)-Davenport—Schinzel
sequence. Indeed, let A; and A; be two edges appearing in this order along the
envelope, defined over two intervals I and J. The corresponding functions f;
and f; being continuous, they must intersect in a point whose abscissa is greater
than the right endpoint of I and smaller than the left endpoint of J. Having
an alternating subsequence of length s + 2 for the two symbols i and j implies
the existence of s + 1 intersection points between the graphs of f; and f;, a
contradiction.

The number of edges on the lower envelope is thus bounded above by the
maximal length Ag(n) of an (n, s)-Davenport—Schinzel sequence.

Consider the case when the functions are defined over closed intervals and not
over the whole of R. The lower envelope is not continuous and the argument used

15.8. The lower envelope of a set of functions 357

T fi(z)

Figure 15.3. Extending the function f;.

above to bound the number of its edges does not hold any more. This problem
may be overcome by extending the domain of definition of the functions f; to cover
the whole of R. More precisely, pick a positive real number u. If f; is defined over
[@i,ims Timas]» then we extend the graph of f; for x > z;,,,, by the semi-infinite ray
originating at (z;,, .., fi(Zi,..,)) whose slope is y, and symmetrically for z < #;,,
by the semi-infinite ray originating at (zi,,, fi(Zi,.,)) whose slope is —pu (see
figure 15.3). Thus we have a set of functions g; which extend the functions f;
and are continuous. When p is large enough, the sequence of labels of the edges
on the lower envelope of the g;’s is identical to that of the lower envelope of the
fi’s, and this lower envelope can be easily constructed knowing that of the g;’s.

It is readily verified that, for u large enough, ¢; and g; have at most s + 2
intersection points if the corresponding functions f; and f; intersect in at most s
points. It follows that the sequence of labels of the edges on the lower envelope
of g1,...,gn is a (n, s + 2)-Davenport—Schinzel sequence.

The complexity of the lower envelope of the g;’s is thus bounded above by
the maximal length Ags4o(n) of an (n,s + 2)-Davenport—Schinzel sequence. The
complexity of the lower envelope of the f;’s is also bounded by Agi2(n).

Example. Consider the case of line segments. Two line segments intersect
in at most one point, so the sequence of labels on the lower envelope of a set
of segments is an (n, 3)-Davenport-Schinzel sequence. The complexity of this
lower envelope is thus O(na(n)). In fact, this bound is achievable and one may
actually construct line segments whose lower envelope has super-linear complexity
O©(na(n)) (see the bibliographical notes at the end of this chapter).

Let us now consider the case when the functions f; are only defined over semi-
infinite intervals. We first consider the functions f; whose domains of definition
are intervals defined by ¢ > z;_, . If we extend these functions by a half-line
starting at (xi,,,,, fi(zi,,,,)) of slope —u for u big enough, then we obtain func-

358 Chapter 15. Arrangements of line segments in the plane

tions g;, defined over R, whose graphs have pairwise at most s + 1 intersection
points if the graphs of the f;’s had pairwise at most s intersection points. The
sequence of labels on the lower envelope £, of the ¢;’s is an (n, s + 1)-Davenport—
Schinzel sequence. The complexity of L, is thus Agy1(n).

A similar result obviously holds for the lower envelope £; of the functions f;
whose domains of definition are defined by x < z;,,... The lower envelope of the
n functions f; is the lower envelope of the union of £, and £;. Its complexity is
O(n, + n;) = O(As41(n)) since both £, and £; are monotone chains.

Example. The lower envelope of n half-lines has complexity O(n).

15.3.2 Computing the lower envelope

We now present an algorithm that computes the lower envelope of n functions
fi, i = 1,...,n, defined over R such that no two graphs of these functions have
more than s intersection points. The algorithm recursively computes the lower
envelope Zi of fi(z), ..., f|n/2), and the lower envelope I, of finj2)+15 -+ 5 ful2).
Both envelopes are monotone chains of complexity As(%) < As(n), as was shown
in the previous subsection. Monotonicity implies that we can compute the lower
envelope of the union of Z; and Z; by sweeping the plane with a line parallel to the
y-axis, in a manner that is similar to merging two sorted lists (see section 3.1.2).
Let us call the current edges the two edges of Z1 and Z; intersecting the sweep line.
When the sweep line passes over a vertex of a current edge Z; or Zo, this current
edge is replaced by the edge that follows on the corresponding lower envelope. If
this edge is part of the constructed lower envelope, a new edge is created for the
lower envelope. When the sweep line encounters an intersection point between
the two current edges, a new edge is created on the lower envelope. In either case,
the next intersection point between the two current edges is computed. Merging
the lower envelopes in this fashion takes time proportional to the total number
of edges on Z; and Zy, and to the number of intersection points between Z; and
T, which is O()s(n)) as was shown in the previous section. We have thus proved
that:

Theorem 15.3.1 The lower envelope of n functions f;, i = 1, ...,n, defined over
R and whose graphs have pairwise at most s intersection points, has complezity
O(As(n)) and can be computed in time O(As(n) logn).

15.4 A cell in an arrangement of line segments

Let & be a set of n line segments in the plane. In the arrangement of S, we
may distinguish between cells whose boundaries contain at least one endpoint

15.4. A cell in an arrangement of line segments 359

of a segment (the non-trivial cells) and the cells whose boundaries contain no
endpoints (the trivial cells). Trivial cells are convex and their complexity is
O(n). In section 15.3, we have seen that the complexity of the lower envelope
of a set of n line segments in the plane can be ©(na(n)). So we can conclude
that Q(na(n)) is a lower bound on the worst-case complexity of a non-trivial
cell in the arrangement of n line segments. To show this, consider a set of n
line segments whose lower envelope has complexity ©(na(n)). To S, we add 2n
segments, almost vertical, and long enough so that each of them stands above an
endpoint of a segment in S (see figure 15.3). We also add a horizontal segment
lying above all the segments in S while cutting all the almost vertical segments
that we added. The new set of segments S’ has 3n+ 1 segments, and the edges on
the boundary of the unbounded cell lying below all the segments are in one-to-
one correspondence with the edges of the lower envelope of S’. But the Q(na(n))
edges on the lower envelope of S also correspond to a subset of the edges on the
lower envelope of S’. It follows that the unbounded cell is at least as complex as
the lower envelope of S, so that it also has complexity Q(na(n)).

As we will see, this bound is also an upper bound, which shows that the com-
plexity of cells in the arrangement of line segments depends almost linearly on
the number of segments, while the total arrangement may have up to (n?) edges
in the worst case. We will then explain how to efliciently compute such a cell.

15.4.1 Complexity

Consider a set S of n line segments in the plane. We will assume that these
segments are in general position, meaning that no three segments have a common
intersection and that any two segments intersect in at most one point. A standard
perturbation argument shows that the complexity of a cell is maximal in this case.
Indeed, if the segments are not in general position, one may perturb them slightly
so that they are in general position, without decreasing the number of edges or
vertices of the cell under consideration.

From now on, and as was done in section 15.1, we consider that each line
segment S is a rectangle of infinitely small width whose boundary is formed
by two copies of the segment S called the sides of S, and two infinitely short
perpendicular segments at the vertices. Under the general position assumption,
the boundary of the union of these rectangles is homeomorphic to the union of
all the segments. Henceforth, we will thus make a distinction between a segment,
considered as a infinitely thin rectangle, and a segment side. The number of sides
is 2n.

We orient the rectangles counter-clockwise, which induces a clockwise orienta-
tion for the connected components of the boundaries of each cell.

Let I be a connected component of the boundary of some cell C' in the ar-

360 Chapter 15. Arrangements of line segments in the plane

rangement A(S) of S. Note that a segment may contain several edges of I".

Lemma 15.4.1 Consider a segment S that contains at least one edge of I'. The
edges of I' contained in S are traversed on the boundary of I' in the same order
as they are traversed on the boundary of S.

Proof. Consider the infinitely thin rectangle S and the region £ bounded by I'
that does not contain C. Then S is contained in R, and the result follows from
a slight adaptation of the proof of theorem 9.4.1. m|

We label each edge of I' by the index of the side of the segment of § to which it
belongs. The sequence Y1 of these labels forms a circular sequence which we break
into a linear sequence by choosing some origin O on I'. The number of distinct
labels in X1 is at most the number of sides, which is 2n. Two successive labels are
distinct. Since two segments have only one intersection point, it is tempting to
conjecture that the sequence Xr is a (2n, 3)-Davenport—Schinzel sequence. The
choice of O may induce some additional repeats, however. Indeed, if ababab is not
a subsequence of the circular sequence, it may not always be possible to choose
O so that the same is true for the linear sequence. For instance, consider figure
15.4: the linear sequence

EI‘ =ajcacC) a) as C bl bg C1 C bg as a) bg bl

does contain the subsequence aj;cia;ci;a;. We solve this technical problem by
constructing another sequence X} on at most 3n symbols which is at least as
long as Y. Let L be a side of a segment that supports several edges along I.
These edges are naturally ordered by the orientation of L, so we let I be the first
point of L that belongs to I' and F the last point of L that belongs to I'. The
points I and F' subdivide I' into two chains ending at I and F. Denote by v the
oriented chain that contains the origin O. The idea is to give a different label to
the edges on I' that belong to L N~ according to whether they are before O or
after O. Then the new sequence XL} is merely the linear sequence of these new
labels along the edges I'. For instance, on figure 15.4, we now have

Yt =afcacial agcr b bacycabaagal by b .
L} has at most 3n distinct labels, since only one side of each segment needs to
be relabeled.
Lemma 15.4.2 X is a (3n, 3)-Davenport-Schinzel sequence.

Proof. We already know that ¥} has at most 3n distinct labels and does not
contain two identical consecutive elements. It remains to see that ababa is not a
subsequence of ¥} for any two symbols a # b.

15.4. A cell in an arrangement of line segments 361

Figure 15.4. Circular and linear sequences.

We first show that, if abab is a subsequence of X7, the sides labeled a and b
must intersect. For this, let the subsequence abab correspond to the edges E/,
E|, E], E! on T'. Let S, be the side labeled a that contains £, and E,. Pick a
point A; in the relative interior of E}, and a point Ag in the relative interior of
E! (see figure 15.5). We define Sy, B; and B; similarly.

Let A be the union of the subchain I'1s of I' that joins A; to Ag and of the
simple polygonal chain contained in the interior? of S,. Then A is a simple closed
polygonal chain. The bounded polygonal region A enclosed by A contains, in a
neighborhood of By, a portion of the segment B; Bs. Indeed, if A is oriented by
the orientation induced by I', then in a neighborhood of A; the side S, is on the
right of A and the cell lies to the left, and a similar statement holds for S, in
a neighborhood of As and for Sy in a neighborhood of B;. Moreover, A cannot
cross the portion of I' that joins Ay to Bs, so that A cannot contain Bz. The
segment BB must therefore cross A. It cannot cross I'12, however, hence it
must cross A \ I'12, and therefore also A As.

Assume now for a contradiction that ababa is a subsequence of L. In addition
to the notation above, let us pick a point Ag in the relative interior of £/ that
is after A on E” and another point A4 in the relative interior of the third edge
E!/ labeled a, and so supported by S,. From the preceding argument, we know
that A1 As and B Bs intersect, and similarly for By B2 and A3A4 (simply consider

?We assume that the segments are in general position, and that they are infinitely thin
rectangles.

362 Chapter 15. Arrangements of line segments in the plane

Figure 15.5. For the proof of lemma 15.4.2,

the subsequence baba of Xr). The two intersection points must be distinct since,
owing to the relabeling and to lemma 15.4.1, the points A; are all distinct and
necessarily appear in the order Aj, Ag, A3, A4 on S,. But this latter condition
implies that A; A3 and A3 A4 cannot intersect, so that S, must cut S, twice. This
is impossible as two segments may only cross once. |

An immediate consequence of this lemma is:

Theorem 15.4.3 The complezity of a cell in the arrangement of n line segments
in the plane is O(na(n)).

As we mentioned in section 15.3, it is possible to place segments in the plane so
that the cell containing, say, the origin has complexity Q(na(n)), so the bound
in the theorem above is tight.

15.4.2 Computing a cell
The algorithm

Again let S be a set of n line segments in the plane, assumed to be in general
position, and pick a point A that does not belong to any of the segments in S.
Our goal is to compute the cell C(S) in the arrangement of S that contains A.
The algorithm we present here is a variant of the randomized on-line algorithm
that computes the vertical decomposition of §. The reader unfamiliar with that

15.4. A cell in an arrangement of line segments 363

algorithm is invited to refer to subsection 5.3.2 for more details. We will only
recall here the main definitions. The vertical decomposition is obtained by casting
a ray upwards and downwards from any endpoint of the segments. The ray stops
as soon as it encounters a segment in S (see figure 5.4a,d). The vertical segments
(sometimes half-lines) traced by the rays are called walls, and together with
the segments in & they decompose the plane into trapezoids that may degenerate
into triangles or unbounded trapezoids. The algorithm also computes the vertical
adjacencies of the trapezoids.®

To apply the formalism of chapter 4, we defined the problem in subsection 5.3.2
in terms of objects, regions, and conflicts between objects and regions. For this
problem, an object is a segment. A region is a trapezoid in the decomposition of
a subset of the segments. Each region is determined by at most four segments.
There is a conflict between an object and a region if and only if the segment
intersects the trapezoid. Computing the vertical decomposition is thus the same
as computing the set of regions defined and without conflicts over §.

The algorithm we present to compute a cell C(S) in fact computes a vertical
decomposition of that cell (see figure 15.6). To generalize the algorithm of sub-
section 5.3.2 to compute only a single cell is not straightforward, however: the
regions that interest us are not all the trapezoids defined and without conflict
over the set S of segments, but only those contained in the cell C(S). Unfor-
tunately, whether a trapezoid is contained in the cell C(S) cannot be decided
locally by examining only that trapezoid and the segments that define it. This
forbids verbatim use of the formalism and results of chapters 4 and 5.

To avoid this difficulty, we proceed as follows. Let R be the subset of seg-
ments already inserted into the data structure, and let C(R) be the cell in the
arrangement of R that contains A. We allow the algorithm to compute, in ad-
dition to the trapezoids in the decomposition of C(R), other trapezoids in the
arrangement of R that are not trapezoids of C(R). In order not to degrade the
performances of the algorithm, at certain incremental steps we perform a clean-up
step, during which we remove the trapezoids that do not belong to the cell C(R).
Only the trapezoids that belong to C(R) will be subdivided during subsequent
incremental insertions. To distinguish between these trapezoids, we traverse the
connected component in the vertical adjacency graph G of the current vertical
decomposition that contains the trapezoid containing A. This latter trapezoid
is maintained throughout the incremental steps. The other leaves of the graph
that are not traversed are deactivated: they correspond to trapezoids in the cur-
rent decomposition that are not contained in the cell C(R). These trapezoids
will not be subdivided, and the corresponding leaves in the graph will not have
children in subsequent insertions. Figure 15.7 shows an intermediate situation in
the algorithm.

3Recall that two trapezoids are vertically adjacent if they share a common vertical wall.

364 Chapter 15. Arrangements of line segments in the plane

Figure 15.6. Vertical decomposition of the cell that contains A.

Between two clean-up steps, the algorithm is similar to the one described in
subsection 5.3.2, apart from a few details which will be noted below. For each
insertion of a new segment S, we locate S using the influence graph, then update
the decomposition by subdividing the active trapezoids intersected by S. In the
influence graph, this corresponds to creating new children for the active nodes
that conflict with S.

Between two clean-up steps, and inside each trapezoid which has not been de-
activated, we build the decomposition of the arrangement of the segments which
conflict with this trapezoid and are inserted between the two clean-up steps. Let
7, be the set of nodes in the influence graph which were not deactivated during
the previous clean-up step p. To each node in 7, we assign a secondary influence
graph. This secondary graph is rooted at T and its nodes are the descendants of
T created between step p and the next clean-up step. The secondary graph com-
puted just as in subsection 5.3.2 under the incremental insertions of the segments
inserted between step p and the next clean-up step. Its construction differs from
that of a usual influence graph in a minor detail: the removal of superfluous walls.
When inserting a segment S, if it intersects a wall, then only one of the two parts
of that wall intersected by S is a wall in the new arrangement, and the other
part must be removed and the two adjacent trapezoids must be merged. This
procedure is detailed in subsection 5.3.2, and we apply it here to adjacent trape-
zoids that belong to the same secondary influence graph and also to trapezoids in
different secondary influence graphs. A merge of the latter kind is called an ez-

15.4. A cell in an arrangement of line segments 365

-

Figure 15.7. Intermediate situation in the computation of the cell that contains A. The
shaded zone represents the final cell. The trapezoids which are neither entirely
nor partially shaded are deactivated. '

ternal merge. The vertical adjacencies are updated accordingly. External merges
therefore introduce certain links between nodes in distinct secondary influence
graphs.

The clean-up steps ensure that not too many trapezoids are created. Never-
theless, they must not be so frequent that the algorithm becomes inefficient.
We perform clean-up steps after the insertion of the 2i-th segment, for i =
1,...,|logn] — 1. Note that the last clean-up step was performed at step p;
where p; is the greatest power of 2 such that 2py < n.

Analysis of the algorithm

Suppose for now that n is a power of 2. We will analyze the complexity of the
algorithm between two clean-up steps p and 2p.

Denote by S; the set of segments inserted during steps 1, ..., 2'. Each trapezoid
T of C(Sp) is subdivided into trapezoids by the segments with which it conflicts.
Let Sg;, stand for the set of segments of Sy that conflict with T', and let Egp be
the corresponding chronological sequence. The portion of the decomposition of
the segments in S7, that lies inside 7' has complexity O(|SF,|?).

To make things simpler, we assume that the algorithm does not perform the
external merges. The number of nodes is only greater, so the location phase is

366 Chapter 15. Arrangements of line segments in the plane

always more complex. The cost of the external merges is proportional to the
number of nodes killed (and hence visited) during the steps, so the external
merges are accounted for by the location phase. The bounds we obtain on the
complexity of the algorithm that does not perform the external merges will thus
still be valid for the algorithm that performs the external merges.

Subsection 5.3.2 provides us with a bound on the number of nodes and the
storage needed by the secondary influence graphs. For a trapezoid 7' the bound
is O(|82Tp|2). To bound the storage required by all the sbcondary influence graphs
computed between steps p and 2p (and ignoring the external merges), we sum
this quantity over all the trapezoids of C(S,). Here we need a moment theorem
analogous to theorem 4.2.6, but usable in a context where regions are not defined
locally. Such a theorem is stated in exercise 4.4 and bounds this sum by a function
of the expected complexity go(r, Z) of a cell in the arrangement of a random
sample of r segments in a set Z. (Note that this complexity is linearly equivalent
to the complexity of its vertical decomposition.) Therefore, the number of nodes
in all the secondary influence graphs computed between steps p and 2p is

2
S O(SLP) =0 ((%”) golp, szp)) — O(pa(p)).
T

The storage needed by the whole influence graph is thus

logn]—1

> 0(2'a(2h) = O(na(n)).
i=1

The complexity of the algorithm can be accounted for by three terms that
correspond to the location phase, the update phase, and the clean-up steps. The
location phase is analyzed in much the same way as the storage. We first evaluate
the average number of nodes visited during step p, in the secondary influence
graph rooted at a node that corresponds to a trapezoid T in C(S,). The node
is also denoted by T for simplicity. As before, we denote by 82:’;, (resp. ng) the
subset (or the chronological sequence) of the segments that conflict with 7" and
that are inserted before step 2p. Denote by Sy (resp. L) the subset (or the
chronological sequence) of all the segments that conflict with 7. Note that SQTp
is a random subset of S7. Under the assumption above, it all happens as if we
were locating the segments in the sequence St in the secondary graph rooted at
T'. This graph is the influence graph corresponding to the decomposition of Sg;,
inside the interior of T'. A slight adaptation of the proof of theorem 5.3.4 yields an
upper bound on the expected number of nodes visited in the secondary influence
graph. Let fy(r, 2) be the expected number of trapezoids in the decomposition of
a random sample of r segments in a set Z. Then fo(r, Z) = O(r?). If we assume

15.4. A cell in an arrangement of line segments 367

that Sg;, is given, then we may use theorem 5.3.4 to bound the cost of inserting
the last object by

(57|
= fo(lr/2), 83,)

This expression bounds the cost of inserting all the segments in S'{p as well as the
cost of locating in the secondary graph rooted at T all the segments in St \ 83;,
that are inserted after step 2p. The number of nodes visited in the secondary
influence graph during the successive insertions, averaged over all random samples
83;, in St, is thus

Ol E||57]

535!

2p 2|,8T
Z fO(LT/TZJ 2p) = O (lST' E(lsg;)l)))
r=1

Hence, the expected number of segments inserted before step 2p that conflict
with T is

B(sg)) = 2= lsrl =0 (1lstl)

since p < %. The average number of nodes visited in the secondary influence
graph rooted at T is finally O (2(S7[?).

Summing over all the nodes of C(Sp), we then obtain a bound on the expected
number m of nodes visited in all the secondary influence graphs rooted at these

nodes:
m =0 (%XT:LST\?) .

Once again, we can use the adapted moments theorem in exercise 4.4, to obtain

m=0 (% (2) pa<p>) = O(na(p)). (15.1)

Summing over all the clean-up steps, we get

[lognj—1
Z O(na(2Y)) = O(na(n) logn).
i=1

The update phases and clean-up steps are easily analyzed. Indeed, the up-
date phases require time proportional to the number of nodes created, which
is O(na(n)). Identifying the trapezoids of C'(Sp) during the clean-up step p re-
quires time proportional to the number of trapezoids in C(Sp), which is O(pa(p)).

368 Chapter 15. Arrangements of line segments in the plane

To deactivate the trapezoids during the different clean-up steps takes time pro-
portional to the number of created nodes, which is again O(na(n)). The total
cost of the clean-up steps is thus

[logn|—1

Y 0(2'a(2) = O(na(n)).
i=1

This finishes the proof of the theorem stated below when n is a power of 2. To
analyze the general case, we must also analyze the cost of inserting the segments
at steps 2py +1,...,n. But this is word for word the same as the analysis above
and produces the same results (and notably equation 15.1) if we note that py > %.

Theorem 15.4.4 A single cell in the arrangement of n line segments in the
plane can be computed in expected time O(na(n)logn) and storage O(na(n)).

15.5 Exercises

Exercise 15.1 (Optimal computation of lower envelopes) Show that the lower
envelope of n line segments in the plane can be computed in optimal time O(n logn).

Hint: The lower bound Q(nlogn) is proved by reduction to sorting. As for the upper
bound, first project the endpoints of the segments on the z-axis. They define 2n — 1
consecutive non-overlapping intervals. Build a balanced binary tree whose leaves are
the intervals in the appropriate order. To a node corresponds an interval which is the
union of the intervals at the leaves in the subtree. A segment S is assigned to the node
whose interval is the smallest that still contains the projected endpoints of the segments.
(This node is the first common ancestor of all the leaves covered by S.) Show that
the lower envelope of the segments assigned to a single node has complexity O(m) and
not O(ma(m)), using that there exists a vertical line that intersects all these segments
and using also the result on half-lines mentioned in section 15.3. Observing that the
projections of two segments assigned to different nodes at the same level in the tree
do not overlap, show that the lower envelopes of the segments assigned to the nodes
on a given level of the tree also have linear complexity, and can be computed in time
O(nlogn). These O(logn) lower envelopes can be merged in time O(na(n)loglogn),
which is O(nlogn).

Exercise 15.2 (Airport scheduling) Consider a set M of n points in E¢ that move
along algebraic curves of bounded degree at given constant speeds. At each moment £,
we want to know the point M(t) in M that is the closest to the origin. Show that the
sequence X of points M(t) for t € [0, +o00[is almost linear, and that it may be computed
in time O((n + |X|) log n).

Exercise 15.3 (Computing a view) Consider a scene formed by n line segments in
the plane (not necessarily disjoint). Show that a view from a given point (defined as
the portions of segments visible from that point) may be computed in optimal time
O(nlogn). Similar question for more general objects.

15.5. Ezercises 369

Hint: A projective transformation sends the origin to (—00,0), and the corresponding
problem is exactly that of computing the lower envelope of n segments, see exercise 15.1.

Exercise 15.4 (Convex hull of objects) Show that computing the convex hull of n
objects in the plane reduces to computing the lower envelope of n functions. If the objects
are convex and disjoint, the graphs of these functions have at most two intersection
points. Give bounds on the combinatorial and computational complexities of convex
hulls of curved objects, in particular circles, ellipses, etc.

Hint: For each object, consider the set of its tangent lines, and use polarity to work in
the dual plane (where points correspond to lines in the original plane).

Exercise 15.5 (Stabbing lines) Given n objects in the plane, compute the set of lines
that simultaneously stab all of them.

Hint: Use the same polarity as in the preceding exercise.

Exercise 15.6 (Motion planning of a polygon under translation) Consider a
polygon M with m sides that moves under translation within a polygonal region £ with
n sides.

1. Show that the set of translations that bring a vertex of M (resp. of £) in contact
with an edge of £ (resp. of M) is a set C of mn line segments (identifying the vector OM
of the translation with the point M). Conclude that the set of feasible translations of
M in £ consists of one or several polygonal regions with total complexity O(m?®n?). If
M is convex, the complexity is only O(mn) (see exercise 19.8).

2. Show that the set of positions of M in £ that are accessible from a given position
I is the cell in the arrangement of C that contains I. Conclude that it is possible to
determine whether two positions I and J are accessible one from the other, and if so,
compute a feasible path for M from I to J in time O(mna(mn)log(mn)).

3. Show that the complexity of the arrangement of C may be as bad as Q(m?n?) (see
figure 15.8).

4. Show that, in some cases, any path from I to J may have complexity Q(mn). For
instance, consider a carpenter’s folding rule with m segments, but in a semi-folded rigid
configuration, that tries to pass through n consecutive doors.

Exercise 15.7 (Non-trivial boundary) Consider two connected polygonal regions B
and R, which may have holes. A connected component of the intersection B N R
is called non-trivial if its boundary includes at least one vertex of B or R. The non-
trivial boundary of the intersection B N R is the union of the polygons that bound all
the non-trivial connected components of this intersection. Show that the complexity of
the non-trivial boundary of the intersection B N R is O(|B| + |R|), where |B| and |R|
respectively stand for the number of sides of B and R. Hence any cell of the intersection
of two polygonal regions B and R has complexity O(|B| + |R|).

370 Chapter 15. Arrangements of line segments in the plane

Figure 15.8. There are (m®n?) feasible positions of M that belong to the same number
of distinct cells of C.

Hint: Put ¥V = B N R for the intersection of B and R. Since R and B play entirely
symmetric roles, it suffices to look at the contribution of the boundary of B to the non-
trivial boundary of V. For this, follow the edges on the boundary of B, and count the
number of edges of V contained in each edge of B.

For each edge E on the boundary of B, count the edges of V contained in £. We
distinguish the first one along F from the others. Among the others, count separately
those that belong to the same connected component of V, those that do not belong to
the same connected component of the boundary of V, and the remaining edges.

Exercise 15.8 (Computing the non-trivial boundary) Show that the non-trivial
boundary of two polygonal regions B and R (see exercise 15.7) can be computed in time
O(mlogm), if m is the total number of edges of B and R.

Hint: We sweep the plane with a line going in two directions, first going from left to
right and then from right to left. During the sweep, we maintain three structures which
respectively represent the segments of B, of R, and of the resulting non-trivial boundary
that intersect the sweep line. During the left-to-right sweep, we only create a new interval
for the result when the current event is a vertex of B contained in R, or a vertex of R
contained in B. We call such a vertex a remarkable vertex. Then we are assured that this
interval is contained in a non-trivial cell. We do not discover the entire non-trivial cell,
however, rather we only know the portion of this cell that can join a remarkable vertex
by a decreasing z-monotone path. This is why we need to sweep the plane in the other
direction, from right to left.

Exercise 15.9 (Computing a cell) Devise a deterministic algorithm that computes a
single cell in the arrangement of n line segments in the plane, in time O(nlog2 n). The
cell is characterized by a point A that belongs to it.

Hint: Use the divide-and-conquer method. Split the set of n segments into two subsets
of roughly the same size to obtain two cells C{* and C#! in the sub-arrangements that

15.6. Bibliographical notes 371

contain A. Merging these two cells can be done using a variant of the sweep method of
exercise 15.8. This variant in fact computes the non-trivial boundary of the intersection
C{f N C# as well as the boundary of the cell in this intersection that contains A, even if
it does not belong to the non-trivial boundary. It remains to extract the description of
the cell C4 in the current divide-and-conquer step that contains A.

Exercise 15.10 (Half-lines) Show that the complexity of a cell in the arrangement of
n half-lines is O(n). Devise a deterministic algorithm that computes it in optimal time
O(nlogn).

Hint: Applying a rotation if necessary, we may assume that no half-line is vertical.
Suppose that the cell is characterized by a point that belongs to it. Distinguish between
the subset £% of the half-lines that intersect y = +00 and the subset £ of the half-
lines that intersect ¥y = —oo. For each of these subsets, we explain how to compute
the unbounded cell that contains the origins of some half-lines. (The other cells can be
computed in a similar way.) For £, we compute a left tree and a right tree by sweeping
the plane from top to bottom with a line parallel to the z-axis. At each intersection [
between two half-lines, we keep only the portion of the half-lines which lies to the left
(for the left tree) or to the right (for the right tree). The boundary of the unbounded
cell of £ is obtained by computing the boundary of the unbounded cell of the union of
both trees. Finally, exercise 15.8 can be used to compute the intersection of the cells of
EY and £ that contain A.

Exercise 15.11 (Curved arcs) Bound the complexity of a cell of an arrangement of
curved arcs in the plane and devise an algorithm that computes the cell that contains
some given point.

Exercise 15.12 (Manipulator) A planar manipulator is formed by two rigid bodies
articulated in a point A. One body is fixed to the origin O. The manipulator has two
degrees of freedom: a rotation around O and a rotation around A. The configuration of
the manipulator is parameterized by the corresponding two angles. Given some obstacles,
devise an algorithm that computes the set of configurations for which the manipulator
does not collide with an obstacle. Devise also an algorithm that determines whether two
positions are reachable one from the other and, if so, outputs a path that realizes this
change of configuration.

Hint: Express the constraints that limit the motion of the manipulator in the configu-
ration space (which has dimension 2) and use exercise 15.11.

15.6 Bibliographical notes

The connection between lower envelopes of functions and Davenport—Schinzel sequences
was established in a paper by Davenport and Schinzel [74]. Atallah [13], then Sharir and
collaborators [1, 122, 206] proved bounds on the length of Davenport—Schinzel sequences.
Wiernik and Sharir [219] showed how to realize a lower envelope of n segments in the

372 Chapter 15. Arrangements of line segments in the plane

plane that has complexity }(na(n)). The solution to exercise 15.1 is due to Hershberger
[124].

The analyses of the complexity and of the computation of the unbounded cell in the
arrangement of line segments are given by Pollack, Sharir, and Sifrony [189]. Their result
is extended by Guibas, Sharir, and Sifrony [118] to the case of a cell in the arrangement
of curved arcs. Other results on curved arcs are given in [64, 90]. The complexity
and computation of m cells is studied by Edelsbrunner, Guibas, and Sharir in [91, 93].
Solutions to exercises 15.7, 15.8, and 15.9 can be found in their papers.

Alevizos, Boissonnat, and Preparata (7] study the arrangements of half-lines and give
a solution to exercise 15.10. These arrangements find applications in pattern recognition
[8, 33).

The randomized algorithm that computes a single cell described in this chapter is
due to de Berg, Dobrindt, and Schwarzkopf [76]. This algorithm can be generalized to
dimension 3, which is not the case for a previous algorithm due to Chazelle et al. [52].

A comprehensive survey of Davenport-Schinzel sequences and their geometric appli-
cations can be found in the book by Sharir and Agarwal [207].

