Chapter 17

Euclidean metric

This chapter is concerned with the simplest case of Voronoi diagrams, where the
objects are points and the distance is given by the usual Euclidean metric in E.
The cells in the Voronoi diagram of a set M of points are then the equivalence
classes of the equivalence relation “to have the same nearest neighbor in M”. It
is possible to show (see section 17.2) that such cells can be obtained by projecting
the facets of a polytope in E?*! onto E?, which enables us to use several results
concerning polytopes for Voronoi diagrams as well. Bounds can be obtained in
this way for the complexity of Voronoi diagrams and of their computation. In
section 17.3, we define a dual of the Voronoi diagram, the Delaunay complex,
that enjoys several properties which make it desirable in applications such as
numerical analysis in connection with finite-element methods. The last section
of this chapter introduces a first generalization of Voronoi diagrams (see section
17.4): the higher-order Voronoi diagrams. The cells in the diagram of order k are
the equivalence classes of the equivalence relation “to have the same k nearest
neighbors in M”, a notion that is often very helpful in data analysis.

17.1 Definition

Let M be a set of n points in E¢, My, ..., M,, which we call the sites to avoid
confusion with the other points in E?. To each site M; we attach the region
V(M;) in E¢ that contains the points in E? closer to M; than to any other point
in M:

V(M) = {X €B% : §(X,M;) < 8§(X, M;) for any j # i}.

In this chapter, 6 denotes the Euclidean distance in E®. Other distances will be
considered in chapter 18.

The set of points closer to M; than to another site M; is the half-space that
contains M; and that is bounded by the perpendicular bisector of the segment
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Figure 17.1. The Voronoi diagram of a set of points in the plane.

M;M;: this is the hyperplane perpendicular to M;M; that intersects M;M; at
the midpoint of M; and M;. The region V(M;) is thus the intersection of a finite
number of closed half-spaces, bounded by the perpendicular bisectors of M;Mj,
j=1,...,n, j # 1. This shows that V(M;) is a convex polytope, which may or
may not be bounded. As we will see later, the V' (M;)’s and their faces form a cell
complex whose domain is the whole of EZ. This complex is called the Voronoi
diagram of M and is denoted by Vor(M) (see figure 17.1).

A first and useful interpretation of the Voronoi diagram (another interpretation
is given in the next chapter) views the cell V' (M;) as the set of centers of balls such
that the boundary of such a ball contains M; and its interior does not contain
another site Mj, j # 4. In particular, this point of view leads to the interpretation
of a Voronoi diagram in E? as a polytope in E%!, which also enables it to be
computed efficiently. This interpretation is developed in section 17.2 where we
represent spheres of E? as points in E¢1.

From now on, we say that the sites are in Lo-general position if no sphere can
contain d + 2 sites on its boundary.

17.2 Voronoi diagrams and polytopes

17.2.1 Power of a point with respect to a sphere

Consider the Euclidean space of dimension d, E%, and let O be its origin, and T
be a sphere of E? centered at C with radius r. Its equation is given by L(X) =0
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Figure 17.2. Power of a point with respect to a circle.

where
Y(X)=XC*—-r2 (17.1)

By the interior of a sphere ¥, we mean the set of points X such that X(X) is
negative. The exterior is the set of points X such that ¥(X) is negative. A
point X is said to be on, inside or outside a sphere if it belongs to the sphere,
respectively to its interior, to its exterior. For any point X in E¢, (X ) is called
the power of X with respect to 3. The power of the origin with respect to X is
also denoted by o and we have

o=X(0)=C%*-r (17.2)

If D is any line that contains X, and if M and N are the intersection points of
D with X, then

Y(X)=XM-XN. (17.3)
This is obvious when D is the line connecting X and C. Otherwise let D’ be the
line that contains X and C, and let M’ and N’ be its intersection points with ¥
(see figure 17.2). The triangles X M M' and X N'N are similar (the angles M'MN
and M'N'N are supplementary), which proves equation 17.3. In the case where
X belongs to the exterior of X and D is tangent to ¥ at 7, then M = N =T
and the previous equation can be rewritten

o(X) = XT?2 (17.4)

17.2.2 Representation of spheres

Let ¢ be the mapping that takes a sphere T in E%, of center C and whose power
with respect to O is o, to the point ¢(X) = (C, o) in E?+1. Using ¢ enables us
to treat spheres in E¢ just as points in E¢+1,

We embed E? as the hyperplane in E4*! whose equation is g1 = 0. As usual,
the direction of the z44;-axis is called the vertical direction and we use the words
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above and below in connection with this vertical ordering. We denote by X a
point of E? or its coordinate vector (x1,...,zq) indifferently, and by X a point
in B! or its coordinate vector (z1,...,Tat1). By the above embedding, ¢(X)
projects vertically onto C. Later on, we will often use vertical projections and,
unless mentioned otherwise, the word projection refers to the vertical projection
from E4*! onto EC.

We also use homogeneous coordinates and the matrix notation. We denote
by X = (z1,...,2g,t) (resp. X = (z1,...,Z4+1,t)) the homogeneous coordinate
vector of a point X in E? (resp. a point X in E%!). The equation of the sphere
3 can then be rewritten with homogeneous coordinates as

_nt
XEX'=0 with 2:( la -C )
-C o0

where I denotes the d X d identity matrix.

17.2.3 The paraboloid P

From equation 17.2, it follows that the images under ¢ of points in E¢, considered
as spheres of radius 0, belong to the paraboloid of revolution P with vertical axis
and equation

d
Tai1l =Za:§=X-X with X = (z1,...,24).

i=1

In a homogeneous system of coordinates P is given by

I; 0 0
XApXt=0 where Ap=| 0 0 -1/2
0 -1/2 0

Identifying a point X and the sphere centered at X with radius 0 shows that ¢
maps any point X in E? to the point ¢(X) in E%! obtained by lifting X onto P.

The set of concentric spheres in E%, centered at C, is mapped by ¢ onto the
vertical line in E*! that contains C' (and hence ¢(C)). Let ¥ be such a sphere.
Equation 17.2 implies that the signed vertical distance from ¢(X) to ¢(C) equals
r? (see figure 17.3). Thus, the real spheres, whose squared radii are non-negative,
are mapped by ¢ to the points lying on or below the paraboloid, while the points
lying above the paraboloid are the images under ¢ of the imaginary spheres,
whose squared radii are negative.
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Figure 17.3. The paraboloid P (the coordinate system is not normed, so as to simplify the
representation).

17.2.4 Polarity
Consider a quadric Q in E%*! defined by its homogeneous equation
Q(X) = XApX'=0.

Henceforth, @ will be the paraboloid P, but we treat the case of any quadric
for generality as it introduces no additional difficulty. Two points X and Y are
conjugate with respect to Q if

QX,Y)=XAgY"'=0.

The polarity with respect to Q described in section 7.3 is an involution between
points and hyperplanes in E4+! which maps any point A to its polar hyperplane
A* of equation
ADgX' =0,

and maps any hyperplane H to a point H* whose polar hyperplane is H. The
point H* is called the pole of H.

Note that if Q is the paraboloid P and if we put ¢(X) = (C, o), the equation
of the polar hyperplane ¢(2)* of ¢() can be rewritten as

Zap1 =20 -X — 0.

An essential property of polarity is that it preserves incidences (see section 7.3):
a point X belongs to a hyperplane H if and only if its polar hyperplane X*
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contains the pole H* of H. Moreover (see exercise 7.14), when the quadric is the
paraboloid P, we have

Eﬂ_'_ — ﬂ*EX’H—
€EH <« H'eX',

[P [

if we denote by H™ and H~ the half-spaces bounded by H and that lie respec-
tively above and below H.

17.2.5 Orthogonal spheres

Two spheres X1 and X9 centered at C; and C7 and with radii r; and 7o are
orthogonal if
21(Ce) = 73, (17.5)

or equivalently if
22(01) = T%.

A simple verification shows that, if the spheres are real, then they are orthogonal
if and only if the angle (IC4, ICs) at any intersection point I of £;NX, is a right
angle, or equivalently, if and only if the dihedral angle of the tangent hyperplanes
at I is a right angle.

Expression 17.5 may be rewritten as
1 .
01'02—5(01'1'0'2):0, with 0’1'=Ci2—1”i2 (121,2),

which shows that two spheres X1 and X5 are orthogonal if the two points ¢(X)
and ¢(Xy) are conjugate with respect to the paraboloid P. This implies that:

Lemma 17.2.1 The set of spheres in E¢ that are orthogonal to a given sphere
is mapped by ¢ to the polar hyperplane ¢(X)* of ().

Let us now consider the points in E? as spheres of radius 0. The set of spheres in
E? that pass through a given point X € E? is also the set of spheres orthogonal
to the sphere centered at X with radius 0. Therefore its image under ¢ is the
hyperplane ¢(X)* polar to ¢(X) € P. This hyperplane must be tangent to P
and to ¢(X): indeed, the only sphere of radius 0 which is orthogonal to X is X
itself, and hence ¢(X)* intersects P in a single point ¢(X).

Let T be a sphere in E¢. The intersection of ¢(X)* with P is the image under
¢ of the set of spheres with radius 0 that are orthogonal to X, namely ¥ itself
(considered as a set of points, or equivalently as a set of spheres of radius 0).
Consequently, ¢{(X)* NP in E4+! projects onto ¥ in E¢. More generally, we have
the following result.
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Figure 17.4. Interpretation in £(X) in E¢*!,

Lemma 17.2.2 The intersection of the paraboloid P with a hyperplane H projects
onto E¢ as a sphere 1 (H*) whose center is the vertical projection of H*. Con-
versely, the points of a sphere ¥ of E4 lifted on the paraboloid P in E4H1 belong
to a unique hyperplane that intersects P exactly at these points. This hyperplane
is the polar hyperplane ¢(X)* of &(X).

It follows from this lemma that the power of a point X with respect to a sphere X
equals the square of the radius of the sphere 3 x orthogonal to ¥ and centered at
X (Xx is imaginary if X is inside X). The power X2(X) can be easily computed in
the space E4t! that represents the spheres of E%. Indeed (see figure 17.4), X x is
mapped by ¢ to a point [ in E4*! that is the intersection of the vertical line that
passes through X (which corresponds to the spheres centered at X) with the polar
hyperplane ¢(Z)* of #(X) (which corresponds to the spheres orthogonal to X).
The z4,1-coordinates of ¢(z) and I are respectively X2 and Zx(0) = X2—X(X)
since the square of the radius of X x equals the power of X with respect to 3. The
difference of these z4y1-coordinates is called the signed vertical distance. This
proves the following lemma.

Lemma 17.2.3 The power of X with respect to a sphere ¥ equals the signed
vertical distance from the point ¢(X) to the hyperplane $(X)*.

We thus have the following lemma:
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Lemma 17.2.4 Let X and T be respectively a point and a sphere in E¢. If H is
a hyperplane in B4+, we denote by H™ the half-space lying below H. Then:

XeX <= ¢X)edX) = o) eaX)
X eint(X) = ¢(X)€d(E)” = ¢(X)e€o(X)*~
X cext(T) = ¢(X)e€d(T)t = ¢(T) € ¢(X)*+

The equivalences on the left are consequences of the two preceding lemmas, and
the ones on the right are proved by the special properties of polarity (see subsec-
tion 17.2.4 and exercise 7.13).

Any point in the half-space that lies below ¢(X)* in E?+! is thus the image
under ¢ of a sphere whose interior contains X. Likewise, any point in the half-
space that lies above ¢(X)* in E%*! is the image under ¢ of a sphere whose
exterior contains X, and the points on ¢(X)* are the images of the spheres
passing through X.

Remark. Lemma 17.2.3 shows that the squared distance || XA||? separating
points X and A, which is also the power of X with respect to the sphere centered
at A with radius 0, equals the absolute value of the vertical distance between
#(A)* and ¢(X). Points X and A play symmetric roles, so || X A[? also equals
the absolute value of the vertical distance between ¢(X)* and ¢(A).

17.2.6 Radical hyperplane

Let ¥; and ¥9 be two spheres in E®. The set of points in E? that have the
same power with respect to these two spheres is a hyperplane, called the radical
hyperplane and denoted by Hi2, whose equation is given by

Hiysy: Zl(X)—EQ(X):O.

As we observed in subsection 17.2.5, the power of a point X with respect to a
sphere X equals the square of the radius of the sphere orthogonal to ¥ centered
at X. A point has the same power with respect to £; as with respect to Xq if it
is the center of a sphere orthogonal to both £; and ¥5. Lemma 17.2.1 shows that
the set of spheres in E? that are orthogonal to a given sphere T is mapped by ¢
onto the polar hyperplane ¢(X)*. The spheres orthogonal to ¥; and ¥4 are thus
mapped by ¢ to the affine subspace of dimension d — 1 that is the intersection of
#(Z1)* and ¢(X2)*. The projection onto E? of this affine subspace is exactly the
set of points that have the same power with respect to £; and X,.

17.2.7 Voronoi diagrams

Let M = {Mi,...,M,} be a set of n points in E%. As before, we embed the
Euclidean space E? of dimension d into E%+! as the hyperplane x4y = 0, and
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Figure 17.5. The Voronoi polytope V(M).

we let ¢(M;)* denote the hyperplane in E+! that is tangent to the paraboloid
P at the point ¢(M;) obtained by lifting M vertically onto the paraboloid P,
for each 7 = 1,...,n. The preceding discussion shows that the set of spheres
(real or imaginary) whose interiors contain no point of M is mapped by ¢ to the
intersection of the n half-spaces lying above the hyperplanes ¢(M1)*, ..., ¢(My)*.
This intersection is an unbounded polytope which contains P. We call it the
Voronoi polytope and denote it by V(M) (see figure 17.5).

Theorem 17.2.5 The Voronoi diagram of M, denoted by Vor(M), is a cell
complex of dimension d in E* whose faces are obtained by projecting onto E¢ the
proper faces of the Voronoi polytope V(M).

Proof. The boundary of V(M) is a pure cell complex of dimension d, hence so is
Vor(M). Let A be a point on a facet of V(M) that is contained in the hyperplane
tangent to P at ¢(M;). Then A is the image under ¢ of a sphere £ 4 that passes
through M; and whose interior contains no other point of M (see lemma 17.2.4).
There cannot be a site in M closer to the center of £ 4 than M;. But this center
is exactly the projection A of A onto E. In other words, A belongs to the cell
V(M) of the Voronoi diagram. Q

This theorem implies that the combinatorial properties of Voronoi diagrams
follow directly from those of polytopes as studied in chapter 7. In particular, if
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the points ¢(M;)* are in general position in E41 then V(M) is a simple (d+1)-
polytope. Each vertex is thus incident to d + 1 hyperplanes. Expressed in terms
of M;’s, the general condition assumption means that no d+ 2 points in M lie on
the boundary of a sphere: this is exactly the Lo-general position assumption. If
it is satisfied, Vor(M) is a complex whose vertices are all equidistant from some
d+ 1 points in M and closer to these points than to any other point in M: they
are the centers of spheres circumscribed to (d + 1)-tuples whose interiors do not
contain any point in M. More generally, a k-face of Vor(M) is the projection of
a k-face of V(M). It is thus the set of points that are equidistant from d+1— k&
points in M and closer to these points than to any other point in M.

Theorem 17.2.5 reduces the problem of computing the Voronoi diagram of n
points in E? to the computation of the intersection of n half-spaces of E%. The
algorithms described in this book that compute half-space intersections, be they
deterministic, randomized, static or dynamic, output-sensitive or not, can all be
used to compute Voronoi diagrams.

Corollary 17.2.6 The complexity (namely, the number of faces) of the Voronoi
diagrams of n points in E? is O(nl¥?). We may compute such a diagram in
time O(nlogn + nI¥2V) which is optimal in the worst case.

Proof. The upper bounds on the complexity and running time of the algorithm
are immediate consequences of the upper bound theorem 7.2.5 and of results of
the previous sections.

That Q(nrd/ 2]) is a lower bound on the complexity of the Voronoi diagram of n
points in E? is a consequence of exercise 7.11, where it is shown how to construct
a maximal polytope whose vertices lie on the paraboloid, and of theorem 17.3.1
below.

That Q(n log n) is a lower bound on computing the Voronoi diagram in the plane
is a consequence of the fact that the unbounded edges of the Voronoi diagram of
a set M of points correspond to projections of the edges of the convex hull of M.
We also comment on this below. O

17.3 Delaunay complexes

17.3.1 Definition and connection with Voronoi diagrams

Given a set of n points M = {My,...,M,} in E% we lift the points onto
the paraboloid P to {¢(M1),...,¢(Mpy)}, and consider the unbounded polytope
V(M) that is the intersection of the n half-spaces that lie above the hyperplanes
d(Mr)*, ..., d(My)*, where ¢(M;)* is tangent to P at ¢(M;).

We denote by D(M) the convex hull of the points ¢(M), ..., ¢(M,) and a point
O’ on the z4,1-axis, with z4+1 > 0 large enough so that the facial structure of
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Y

Figure 17.6. The polytope D(M).

that convex hull is stable as O’ vanishes to infinity (see figure 17.6). The faces of
D(M) that do not contain O’ form the lower envelope of conv(¢(My),. .., ¢(My))
(see also exercise 7.14). Their projections onto E? form a complex whose vertices
are exactly the M;’s. The domain of this complex is the projection of the convex
hull of the ¢(M;)’s: it is therefore the convex hull conv(M) of the M;’s. This
complex is called the Delaunay complex of M and is denoted by Del(M). For
k=0,...,d, the k-faces of Del(M) are thus in one-to-one correspondence with
the k-faces of D(M) that do not contain O'.

As shown in exercise 7.14, there exists a bijection between the faces of V(M)
and the faces of D(M) that do not contain O’. This bijection maps the facet
of V(M) containing ¢(M;)* to the point ¢(M;). More generally, the k-faces of
V(M) are in one-to-one correspondence with the (d — k)-faces of D(M) that do
not contain (. Moreover, this bijection reverses inclusion relationships.

Owing to theorem 17.2.5, the k-faces of Vor(M) are also in bijection with
the k-faces of the unbounded polytope V(M). So we have a bijection between
the k-faces of Vor(M) and the (d — k)-faces of Del(M) that reverses inclusion
relationships. The Delaunay complex Del(M) is therefore dual to the Voronoi
diagram Vor(M).

Notice that the duality above maps a face of Vor(M), formed by the points
equidistant from m sites in M, to the face of Del(M) that is the convex hull of
these sites.

The preceding discussion leads to the following theorem:
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Theorem 17.3.1 The Delaunay complez of n points M1, ..., M, inE% is a com-
plex dual to the Voronoi diagram. Its faces are obtained by projecting the faces of
the lower envelope of the convex hull of the n points ¢(M1), ..., ¢(My), obtained
by lifting the M;’s onto the paraboloid P.

The preceding theorem reduces the computation of the Delaunay complex of n
points in E? to the computation of the convex hull of n points in E4*1. All the
convex hull algorithms described in this book, be they deterministic or random-
ized, static or dynamic, output-sensitive or not, therefore provide algorithms of
the same kind that compute Delaunay complexes.

Theorem 17.3.1 also gives a lower bound on the complexity of the Delaunay
complex. Indeed, exercise 7.11 exhibits polytopes in E¢+! with n vertices on the
paraboloid, whose complexity is ©(nl/4/21). The same bound therefore applies to
Delaunay complexes, and dually to Voronoi diagrams.

Corollary 17.3.2 The Delaunay complez of n points in E¢ can be computed in
time O(nlogn + n!%21) and this is optimal in the worst case.

17.3.2 Delaunay triangulations

Under Lo-general position assumptions, V(M) is a simple polytope, D(M) is a
simplicial polytope, and Del(M) is a simplicial complex which we call in this
case the Delaunay triangulation (see figure 17.7). If there is a subset M’ C M
of | > d + 1 co-spherical points and if the interior of the sphere circumscribed
to M’ (namely the sphere that passes through all the points in M) does not
contain points in M \ M/, the Delaunay complex D(M) is not simplicial any
more since conv(M’) is a d-face of the Delaunay complex and it is not a simplex.
Note however that this face may always be triangulated, and other non-simplicial
faces of the complex may be triangulated as well. There are many ways to trian-
gulate these faces, and any such triangulation is called a Delaunay triangulation.
Henceforth, we denote by Det(M) any such triangulation.

17.3.3 Characteristic properties

The Delaunay complex has remarkable properties, all due to the fact that it is
dual to the Voronoi diagram.

Theorem 17.3.3 Let M be a set of n points My, ..., M, in E®. Any d-face in
the Delaunay complex can be circumscribed by a sphere that passes through all its
vertices, and whose intertor contains no point in M.

Proof. Let us pick a d-face T’ of the Delaunay complex. Then T is the convex hull
T = conv(M;, ..., M;) of | co-spherical points M, ..., M;,. (If the points are in
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Figure 17.7. The Delaunay triangulation that corresponds to the Voronoi diagram shown
in figure 17.1.

Ly-general position we have [ = d.) The convex hull conv(¢(M;,), ..., d(M;)) is
a d-face F of the convex hull conv(¢(M,), ..., »(M,)), because of theorem 17.3.1.
The intersection of the hyperplane H that supports F' and of the paraboloid
projects onto E¢ as a sphere T circumscribed to conv(Mi,, . . ., M;,), and its center
is the projection on E? of the pole H: of Hp (see lemma 17.2.2). H% is a
vertex of V(M), and more precisely is the intersection of the polar hyperplanes
¢(M),...,¢(M;). C is the vertex of the Voronoi diagram that is incident to
the cells that correspond to the sites M;,, ..., M;, and the interior of ¥ cannot
contain any other point in M. 0O

Our next theorem extends this result into a necessary and sufficient condition
for the convex hull of some points in M to be a face of the Delaunay complex of

M.

Theorem 17.3.4 Let M be a set of points in E¢, and My = {Mig, ..., My}
be a subset of k points in M. The convex hull of My is a face of the Delaunay
complez if and only if there exists a (d — 1)-sphere passing through M, ..., M;,
and such that no point in M belongs to its interior.

Proof. The necessary condition immediately results from the preceding theorem
and from the fact that a sphere circumscribed to a face is also circumscribed to
its subfaces. Assume that there exists a (d — 1)-sphere ¥ that passes through
M;,, ..., M; and whose interior contains no point in M. Let H be the hyper-
plane ¢(X)* in E?*!. This hyperplane contains the points ¢(M,), ..., ¢(M;,)
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and the half-space H~ lying below H does not contain points in ¢(M) (ac-
cording to lemma 17.2.4). Thus H is a hyperplane supporting D(M) along
conv(p(Miy), ..., 9(M;,)). Hence conv(¢(M;,) ... p(M;,)) = HND(M) is a face
of D(M). It follows from theorem 17.3.1 that M;,,..., M;, is a face of the De-
launay complex of M. O

Corollary 17.3.5 Any Delaunay triangulation of a set M of points in E¢ is such
that the sphere circumscribed to any d-simplex in the triangulation contains no
point of M in its interior. Conversely, any triangulation satisfying this property
s a Delaunay triangulation.

The next theorem now exhibits a local characterization of Delaunay triangu-
lations that will be put to good use later on. Let us consider any Delaunay
triangulation 7 (M) of a set M of points in E? and let S; = M;... MgMgy;
and Sg = M ... MgMyo be a pair of adjacent d-simplices in 7 (M) that share
a common face F = M ... My. The pair (S1, S2) is called regular if Mgy, does
not belong to the interior of the sphere ¥y circumscribed to S;. If the sphere ¥
circumscribed to S differs from Y9, the regularity condition is equivalent to the
property that My, does not belong to the interior of ;. Indeed, My, does not
belong to the interior of Tz if and only if £9(Mgz4+1) > 0. But the hyperplane Hp
that supports F is the radical hyperplane of ¥; and 5. Since X1(My41) = 0,
the half-space bounded by Hp that contains My (resp. Mgya) consists of the
points whose power with respect to ¥; is smaller (resp. greater) than their power
with respect to Xy, and therefore

21{Maya) > Xo(Mgya) =0,

which proves that My o does not belong to the interior of ¥;.

Theorem 17.3.6 Consider a triangulation T (M) of a set M of points in E2.
Then T (M) is a Delaunay triangulation if and only if all the pairs of adjacent
d-simplices in T (M) are regular.

Proof. That the condition is necessary is a consequence of theorem 17.3.3. We
must now show that it suffices. To alleviate the notation, we denote by ¢(S) the
k-simplex in E4t! whose vertices are the images of the vertices of a k-simplex
S in E%, and by C the union of the ¢(S)’s for all the faces S of the Delaunay
triangulation 7 (M). The proof consists of proving that C is the graph of a convex
real-valued function over the convex hull conv(M).

As above, we consider two adjacent d-simplices S1 = My ... MgMgy1 and S =
M ... MgMgy.o in T(M) that share a common face F' = M;... My;. We denote
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by £; and X9 the spheres circumscribed to S; and S2. Owing to lemma 17.2.4, the
regularity condition is equivalent to ¢(Mgy1) € ¢(X2)*t and also to ¢(Mgyz) €
@(X1)** because of the discussion above. Therefore, if the pair (57, S3) is regular,
then the (d — 1)-face ¢(F) is locally convex, meaning that there is a hyperplane
that contains ¢(F') such that ¢(S1) and ¢(S2) belong to the half-space lying above
this hyperplane. This is true for any (d — 1)-face of C incident to two d-faces,
and so C is locally convex at any point. Moreover, C is defined over a convex
subset of E¢, namely the convex hull of M. Therefore, C is convex and is the
lower envelope of the polytope D(M), which proves that 7(M) is a Delaunay
triangulation of M. m|

17.3.4 Optimality of Delaunay triangulations

As we have seen in chapter 11, there exist several ways to triangulate a set of
points. Some are not very interesting in practice, and in many applications certain
criteria must be optimized, and an optimal triangulation is desirable. There
are several ways to define optimality. In this section, we show that Delaunay
triangulations maximize two criteria, compactness and equiangularity.

Compactness

The preceding theorem was concerned with spheres circumscribed to simplices in
the triangulation. The next theorem considers the smallest enclosing sphere for
each simplex S: this sphere is the circumscribed sphere of S if the center of the
latter belongs to S, or otherwise is a sphere centered on some k-face (k < d) of
S and passes through the k + 1 centers of this face.

As before, we consider a set M of points in E¢ and 7 (M) a triangulation of
M. To T (M) corresponds a function X+ (X) defined over conv(M) as the power
of a point X with respect to the sphere X circumscribing any d-simplex of 7 (M)
that contains X. By the results of subsection 17.2.6, £;(X) is well-defined when
X belongs to several cells.

Lemma 17.3.7 Let Det(M) be a Delaunay triangulation of M and T (M) be
any other triangulation of M. Then

VX < CO”'U(M), EDet(X) 2 ET(X)

Proof. Consider a d-simplex T in T (M) that contains X, ¥ its circumscribed
sphere, and ¢(T) the d-simplex of E4*! whose vertices are the images under ¢ of
the vertices of T'. (Recall that these vertices are obtained by lifting the vertices of
T onto the paraboloid P.) Lemma 17.2.3 shows that ¥, (X) is the signed vertical
distance (here negative) from ¢(X)* to ¢(X). Notice that ¢(X)* is the affine hull
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of ¢(T). For a given X, this signed vertical distance is maximized when ¢(T) is
a face of the convex hull of ¢(M) in E4*!: in other words, when T is a simplex
of a Delaunay triangulation of M. a

Lemma 17.3.8 If T is a d-simplex and if L is its circumscribed sphere, then

in £r(X) = Sp(Cr) = —rf’
min %r(X) = 2r(Cr) T
where Cl. and r. are respectively the center and the radius of the smallest sphere
enclosing T

Proof. Let X7 be the sphere circumscribed to T, C'r its center, and rr its radius.
Then
Sr(X) = XCt -7

is minimized when X = C7 and is therefore greater than —r%. If Cr is contained
in T, the smallest enclosing sphere of T is ¥, hence r; = rr and the lemma
is trivial. Otherwise, the smallest enclosing sphere of T' is centered on a k-face
(k < d), namely the face F' such that the orthogonal projection of Cr onto the
plane that supports F falls inside F. The radius 7 of this sphere is that of
the (k — 1)-sphere circumscribed to F. Its center C}. minimizes the value of
XCr - XCr when X € T. Pythagoras’ theorem then shows that

CrCy* + 1 =12,
which finishes the proof. O

Let T(M) be any triangulation of a set M of points in E¢. For each simplex T
in T(M), we let r}. denote the smallest radius of a sphere that encloses T', and
the mazimum min-containment radius of 7 (M) is defined by

_ !
C(T(M)) = L8 T

The most compact triangulations are then defined as the triangulations that min-
imize the maximum min-containment radius.

Theorem 17.3.9 Delaunay triangulations are the most compact among all the
triangulations of M.

Note that since the maximum min-containment radius C(7T(M)) is defined only
by the simplices T" of 7(M) such that C(T(M)) = 7/, triangulations other than
Delaunay triangulations might also be most compact among the triangulations
of M.

Proof. Let T(M) be any triangulation of M and let Det(M) be any Delaunay
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triangulation of M. We denote by X; the point X that minimizes £,(X) and
by Xp.: the point X that minimizes Xp..(X). From lemma 17.3.8, we know that
X1 is the center of the smallest sphere that encloses the simplex in 7 (M) which
contains Xr. We denote its radius by r/.. Likewise, Xp,., is the center of the
smallest sphere that encloses the simplex in Det(M) that contains X, and its
radius is denoted by 77,,,. The maximum min-containment radius of 7 (M) equals
r!- and that of Det equals r/,,,. Using lemmas 17.3.7 and 17.3.8, we obtain

£r(Xr) = =12 < Br(Xper) € Bper(Xper) = =1, 2.

Equiangularity (d = 2)

We now restrict the discussion to triangulations of a set of points in the plane.
Given a triangulation 7 (M) of a set M of n points in the plane, we define its angle
vector as the vector Q(T(M)) = (au,...,a3:) where the a;’s are the angles of
the t triangles of 7 (M) sorted by increasing value. We know that ?il a; = t.
Note that a triangulation that maximizes the angle vector for the lexicographic
order also maximizes the smallest of its angles. Such a triangulation is called
globally equiangular.

Theorem 17.3.10 A globally equiangular triangulation of a set M of points in
the plane is always a Delaunay triangulation.

Proof. We must prove that, among all the triangulations of M, the ones that
maximize the angle vector for the lexicographic order are always Delaunay tri-
angulations. Let us thus consider two triangles T} = ABC and T, = BCD in
some triangulation 7 (M), such that the union of 77 and T3 is a strictly con-
vex quadrilateral Q. (This means that A, B, C, and D are all vertices of the
convex hull eonv(A, B,C, D).) In order to increase the equiangularity, we can
flip the diagonal as follows (shown in figure 17.8). If the triangles 7 = ABD
and Ty = ACD are such that Q(T},T}) > Q(T1,T2), then replace T(M) by a
triangulation 71 (M) which contains T} and T} instead of 71 and Ty.

The previous rule may be dubbed a regularization rule since it transforms a
pair of adjacent triangles into a regular pair of triangles: if the two triangles do
not form a convex quadrilateral, then the pair is obviously regular, and the rule
does not apply; otherwise, T1 U T5 is convex and the pair is transformed into a
regular pair. Indeed, let ¥; and ¥, be the circles circumseribed to 77 and Ts.
We will show that the diagonal AD is flipped if and only if D is contained inside
the circle £;. Let a, 3, v, and é be the angles at the vertices of the quadrilateral
ABCD, a, /5, and 71 the angles at the vertices of T1, and B2, 2, and 6 the angles
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2 '

Figure 17.8. Flipping a diagonal to increase the equiangularity.

at the vertices of T5. Moreover, we denote by o}, 5, and §] the angles at the
vertices of 17, and a4, 7, and &, the angles at the vertices of Tj. The situation is
depicted in figure 17.8. If « is the smallest angle in 77 and T3, then the diagonal
is not flipped. But then

b=mm—Pr—<7T-q

so that o+ 48 < 7, which shows that A is not contained inside X9, and this implies
that D is not contained inside ¥;. The situation is entirely symmetric when the
smallest angle is §. When the smallest angle is §1, then we flip the diagonal only
if 6, is greater than (1, which only happens when D is contained inside £;. Of
course, the cases when the smallest angle is v1, (2, or 2 are entirely similar, so we
have shown that the diagonal is flipped if and only if it transforms the irregular
pair (T4, T?) into a regular pair (77, T%).

Clearly, after a flip we have Q(71(M)) > Q(7(M)). Flipping the edges when-
ever possible progressively increases the angle vector of the triangulation. Since
there are only a finite number of triangulations, this process eventually reaches a
triangulation that has only regular pairs of adjacent triangles. This triangulation
is a Delaunay triangulation as is shown by theorem 17.3.6. O

Note that this local regularization always leads to a Delaunay triangulation.
When the points are in Lo-general position, there is only one Delaunay triangu-
lation: the result of the procedure described above therefore does not depend on
the starting configuration, nor on the order chosen to flip the diagonals.

When the points are not in Lo-general position, however, the theorem above
shows that flipping diagonals only reaches a Delaunay triangulation. Yet there are
several Delaunay triangulations, which may not all have the same angle vectors.
Still, there is an algorithm that can reach a globally equiangular triangulation
(see the bibliographical notes).
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17.4 Higher-order Voronoi diagrams

In this section, we define Voronoi diagrams of order k& and show the connection
between these diagrams and the faces at level k£ in a hyperplane arrangement
in E4+1. As usual, the Euclidean space E? of dimension d is embedded in E¢+!
as the hyperplane zq4,1 = 0, and ¢(M)* denotes the hyperplane in E¢t! that is
tangent to the paraboloid P at the point ¢(M) obtained by lifting M vertically
onto the paraboloid.

In section 17.2, we established the connection between the Voronoi diagram
of a set M of n points My, ..., M, in E% and the polytope in E%*! that is the
intersection of the n half-spaces ¢(M;)** that lie above the hyperplanes ¢(f;).
Equivalently, V(M) is the cell at level 0 in the arrangement A of the hyperplanes
d(M1)*, ..., ¢(Mp)*, if the reference point is on the z441-axis, sufficiently high
so that it is above all the hyperplanes. Let us recall that a point is at level & in
A if it belongs to exactly k open half-spaces ¢(M;,)*™,...,¢(M; )*~, such that
each ¢(M;;)*~ is bounded by ¢(M;;)* and does not contain the reference point
(see section 14.5).

It is tempting to consider the cells at levels k > 0. We define below a cell
complex that spans E?, called the Voronoi diagram of order k of M, and show in
theorem 17.4.1 that the cells of this complex are the non-overlapping projections
onto E? of the cells at level k in the arrangement A.

Let My, be a subset of size k of M. The Voronoi region of My is the polytope
Vie(My) of the points in E? that are closer to all the sites in M} than to any
other site in M \ M. Formally,

Vk;(Mk) = {X VY M; € Mg, VMj e M \ Mk; “XMz” < ”XM]”}

Let us consider all the subsets of size k& of M whose Voronoi regions are not
empty. As proved in the theorem below, these polytopes and their faces form a
d-complex whose domain is E?. This complex is called the Voronoi diagram of

order k of M (see figures 17.9 and 17.10). It is denoted by Vorg(M). When
k = 1, we recognize the definition of the usual Voronoi diagram.

Theorem 17.4.1 The Voronoi diagram Vorg(M) of order k of a set M =
{My,...,Myp} of n points in E? is a cell complex of dimension d in E. The
cells of this compler correspond to the cells at level k in the arrangement A of
the hyperplanes ¢(M1)*, ..., ¢(My)* in E¥HL, when the reference point is on the
Tgy1-azis above all the hyperplanes. A cell of Vory(M) is obtained by project-
ing vertically onto E® the corresponding cell in A. The l-faces of Vorg(M) are
obtained by projecting the l-faces common to cells at level k in A.
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Figure 17.9. The Voronoi diagram of order 2 of the points in figure 17.1.

Figure 17.10. The Voronoi diagram of order 3 of the points in figure 17.1.

Proof. The proof relies on lemma 17.2.4. A sphere in E¢ whose interior contains
k points is mapped by ¢ to a point at level k£ in the arrangement A of the
hyperplanes ¢(M1)*, ..., p(My)*.

More precisely, X belongs to the cell Vi (My}) in the Voronoi diagram of order
k, if and only if X is the center of a sphere ¥ whose interior contains the points
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Figure 17.11. The Voronoi diagram of order 2 is obtained by projecting the cells at level 2
in V(M).

of My and only those. Then ¢(X) belongs to the & closed half-spaces below the
hyperplanes ¢(M;)* for the M;’s in My, and only to those half-spaces. The cells

of the Voronoi diagram of order k are obtained by projecting vertically the cells
at level k of A (see figure 17.11).

It is easily verified that any vertical line intersects at least one cell at level k in
A and does not intersect the interior of more than one cell at level k. It follows
that the Il-faces, for | < d, of the Voronoi diagram of order k£ are obtained by
vertically projecting the [-faces common to several cells at level k. If the M;’s are
in Lo-general position, then the hyperplanes ¢(M;)*, ..., ¢(My,)* are in general
position. In that case, it was shown in section 14.5 that the cells of A that contain
an [-face F" at level k have levels that vary between k and k+d+ 1 — 1. Among
those, there is only one cell at level £ and one cell at level kK +d+ 1 — [, and
several cells at levels k < j < k+d+1—1. It follows that the vertical projection
of F' is an [-face of the Voronoi diagrams of orders k +1,k+2,...,k+d—1. O

Having computed the Voronoi diagram of order k of the sites, looking for the
k nearest sites of any point X in E? can be performed by finding the cell of the
diagram that contains X (see exercises 17.2 and 17.4).

It follows from the construction that the total complexity of the Voronoi di-
agrams of all orders k, 1 < k < n — 1, is O(n%t!): indeed it is exactly the
complexity of the arrangement of the hyperplanes in E¢*!. Moreover, these dia-
grams can be computed in time O(n?t!) (see theorem 14.4.4). An upper bound
on the complexity of the Voronoi diagrams Vori(M),...,Vorg(M) of orders
between 1 and k is provided by theorem 14.5.1, which bounds the complexity
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of the first k levels in the arrangement of n hyperplanes in E4*t!. Moreover,
Vor<g(M) = {Vori(M),...,Vorg(M)} can be computed by computing the first
k levels in this arrangement (see theorem 14.5.3 and exercise 14.22) and projecting
back onto E%.

Theorem 17.4.2 The overall complexity of the first k Voronoi diagrams of a set
of n points in E? is O(nl@+D/2E[+1)/21) These k diagrams may be computed
in time O(nl@+D/2AENED/2N) if 4 > 3, or O(nk?log }) if d = 2.

Let us close this section by observing that Vor,_; is the complex whose cells
consist of the points further from a particular site than from any other site. This
is why this diagram is sometimes called the furthest-point Voronoi diagram. The
vertices of this diagram are the centers of spheres circumscribed to d + 1 sites
and whose interiors contain all the other sites. Its cells are all unbounded. The
furthest-point diagram can be obtained by computing the intersection of the n
lower half-spaces bounded by the hyperplanes ¢(M;)*, i =1,...,n.

17.5 Exercises

Exercise 17.1 (Shortest edge) Denote by F and G two finite sets of points in E%.
Show that the shortest edge that connects a point in F to a point in G is an edge of the
Delaunay triangulation of F U G. From this, conclude that each point is adjacent to its
nearest neighbor in the Delaunay triangulation.

Exercise 17.2 (Nearest neighbor in the plane) Show that, given the Voronoi dia-
gram of a set M of points in the plane, it may be preprocessed in linear time to answer
nearest neighbor queries (that is, find the nearest site to a query point) in logarithmic
time. Same question for the set of k nearest neighbors (k fixed).

Hint: One may use the result of exercise 12.2.

Exercise 17.3 (On-line nearest neighbor) We place point sites in the plane and we
want to maintain a data-structure on-line so as to answer nearest neighbor queries on
the current set of sites (that is, find the nearest site to a query point). Devise a structure
that stores n sites using storage O(n), such that under the assumption that the points
are inserted in a random order, the expected time needed to insert a new site is O(log n),
and that answers any query in expected time O(log?® n).

Hint: One may build a two-level data-structure in the following way. The first level
corresponds to a triangulation of the Voronoi diagram, obtained by connecting a site to
all the vertices of its Voronoi region. Build an influence graph for the regions defined as
the triangles in this triangulation (it is a variant of the influence graph used in exercise
17.10). Each triangle points to the site that kills it, and all the triangles created after the
insertion of a site are sorted in polar angle around this site and stored into an array: this
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is the second level of the data structure. Show that the query point belongs to O(log n)
triangles on the average, and hence that only O(logn) binary searches are performed in
the arrays of the second level.

Exercise 17.4 (Nearest neighbor) Consider a set of n point sites in E%. Explain how
to design a data structure of size O(n/4/21+¢) that allows the nearest site to any query
point P to be found in logarithmic time.

Hint: Use the solution of exercise 14.12 in E?t!. The exponent ¢ can be removed, at
the cost of increasing the query time to O(log®n) (see the bibliographical notes at the
end of chapter 14).

Exercise 17.5 (Union of balls) Use lemma 17.2.4 to reduce the problem of computing
the union of n balls in E? to that of computing the intersection of the paraboloid P with a

polytope in E¢*1. Conclude that the complexity of the union of n balls is O(nfg} ). Devise
an algorithm that computes the union of n balls in expected time ©(nlogn + nl#] ).

Exercise 17.6 (Intersection of ballsg The results of exercise 17.5 are also valid for
the intersection of n balls in E?. In E®, show that if the balls have same radius, the
complexity of the intersection is only O(n) and propose an algorithm that computes this
intersection in expected time ©(nlogn).

Hint: Show that each face of the intersection is “convex”, meaning that given any two
points in any face, there is an arc of a great circle joining these points which is entirely
contained in that face; then use Euler’s relation. For the algorithm, use a variant of the
randomized incremental algorithm of section 8.3.

Exercise 17.7 (Minimum enclosing ball) Show that the center of the smallest ball
whose interior contains a set M of points in E? is either a vertex of the furthest-point
Voronoi diagram (of order n— 1) of M, or else the intersection of an edge of this diagram
(on the perpendicular bisector of two sites A and B) with the edge AB.

Exercise 17.8 (Centered triangulation) Consider a triangulation 7 (M) of a set M
of points in E?. Show that, if each simplex in T (M) contains the center of its circum-
scribed sphere, then 7(M) is a Delaunay triangulation of M. Construct a counter-
example for the converse.

Hint: Show that any adjacent pair of d-simplices is regular.

Exercise 17.9 (Non-optimality of the Delaunay triangulation) Construct a set
of points in the plane whose Delaunay triangulation does not minimize the greatest
angle among all the possible triangulations. Same question to show that the Delaunay
triangulation does not necessarily minimize the length of the longest edge, nor the total
length of the triangulation (sum of the lengths of the edges).
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Exercise 17.10 (Incremental algorithm) Let Del(M) be the Delaunay triangula-
tion of a set M of points in Ls-general position in E®. Let A be a point of E? distinct
from the points in M, let S be the sub-complex formed by the d simplices in Del(M)
whose circumscribed spheres contain A in their interior, and let F be the set of (d — 1)-
faces on the boundary of S. Show that if A belongs to the convex hull of M, then the
d-simplices in Del(M U {A}) are exactly the simplices in Del(M) that do not belong to
&S and the simplices conv(A, F), F € F. Generalize this result to the case when A is
outside the convex hull of M, and derive an incremental algorithm that computes the
Delaunay triangulation. Show that this algorithm runs in time G(n[%]“) in the worst
case. Show that if the points are inserted in random order, then the algorithm runs in

expected time O{n logn+ nl] ), which is optimal. Devise a dynamic algorithm that also
allows points to be removed.

Hint: Use a randomized algorithm with an influence graph. Objects are sites, regions
are the balls circumscribed to d+1 sites, and an object conflicts with a region if it belongs
to that region. Show that the ball circumscribed to any new simplex S = conv(4, F) is
contained in the union of the two balls circumscribed to T and V, the two d-simplices
that share the common facet F. Build an influence graph in which each node is the
child of only two nodes, namely the node corresponding to F is the child of the nodes
corresponding to 7" and V. The number of children of a node is not bounded, but the
analysis can be carried out using biregions (see exercise 5.7).

Exercise 17.11 (Flipping the diagonals) Devise an incremental algorithm to com-
pute the Delaunay triangulation of points in the plane which, at each step, connects the
new point to the edges of the triangle that contains it, and then regularizes the triangu-
lation as in the proof of theorem 17.3.10. Show that, if the points are inserted in random
order, the algorithm can be made to run in expected time O(nlogn), which is optimal.

Exercise 17.12 (Flipping in higher dimensions) Generalize the local regularization
rule introduced in the proof of theorem 17.3.10 to the triangulation of point sites in E®
and in higher dimensional spaces. Show that this does not always result in the Delaunay
triangulation of the points, in contrast with the planar case.

Hint: As was done for planar triangulations (proof of theorem 17.3.10), local regular-
ization in E3® corresponds to replacing the upper facets of a simplex in E* by its lower
facets. A simplex in E* having five facets, local regularization in E® leads to replacing
two adjacent tetrahedra 17 and T by three tetrahedra T3, T4, and 15 that are pairwise
adjacent (and have the same vertices as T} and T3), or the converse. Show that the local
regularization rule cannot always be applied even though the triangulation is not regular
everywhere.

Exercise 17.13 (Flipping in higher dimensions) Show that if one adds a new point
P to a Delaunay triangulation Det(M) of a set M of points in E¢, the Delaunay triangu-
lation Det(M U {P}) can be obtained by splitting the simplex of Det(M) that contains
P into d + 1 new simplices, and then applying the generalized local regularization of
exercise 17.12. Show that if the n points in M are inserted in a random order, this
incremental algorithm computes Det(M) in expected time O(nlogn + nl#] ), which is
optimal.
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Hint: As in exercise 17.12, each regularization in E¢ corresponds to replacing the
upper facets of a (d + 1)-simplex in E**! by its lower facets. Show that any (d + 1)-
simplex S involved in any step of the local regularization has P as a vertex and that the
convex hull of its vertices other than P is a d-simplex of Det(M) that is destroyed by
the local regularization.

Exercise 17.14 (Complexity of the Voronoi diagram of order k) Show that the
complexity of the Voronoi diagram of order k of n points in E? is always O(k(n — k))
and can be Q(k(n — k)) in the worst case.

Exercise 17.15 (Higher-order Voronoi diagrams and polytopes) Let M be aset
of n points M,..., M, in E¢. With each subset My = {M,,,..., M, } of size k of

M, we associate its center of gravity G(My) = %Z;.C:l M;,;, and the real number
o(Myg) = %Z;?:l ij Show that the Voronoi diagram of order k of A is the pro-

jection of the polytope in E® defined as the intersection of the half-spaces lying above
the hyperplanes polar to the points (G(My), c(My)), for all subsets My, of size k of M.

Hint: From the fact that

k k k
1 1
EZ(X_M%)'(X"MH):X2— ZM,-j-X“FEZij,
j=1 j=1 j=1
we infer that the k nearest neighbors of X are the points in My if and only M is the

subset for which X has the smallest power with respect to the sphere centered at G(Mp)
and whose power with respect to the origin is o(My).

ol R )

Exercise 17.16 (Euclidean minimum spanning tree) Consider a set M of n points
in Ly-general position in E¢. A Euclidean minimum spanning tree, or EMST for short,
is a tree whose nodes are the points in M and whose total edge length is minimal. Show
that such a tree is a subgraph of the Delaunay triangulation of M. For the planar case,
show that an EMST can be computed in time O(nlogn). Consider the case where the
set of points is not in L;-general position any more.

Hint: Show that the following greedy algorithm produces a minimum spanning tree.
Denote by A the set of points of M that are already connected to the current tree. The
greedy algorithm picks the shortest segment that does not induce a cycle in the current
subtree. This edge connects a point of A to a point of M \ .A. The latter point is added
to A, the edge is added to the tree, and so on until the tree spans M. Show that this
yields an EMST, even if the points are not in Lo-general position. Exercise 17.1 shows
that it can be completed into a Delaunay triangulation of M. Explain how to make the
algorithm run in time O(nlogn).

17.6 Bibliographical notes
Voronoi diagrams have been used for a long time and in various disguises. Voronoi,

a Russian mathematician of the early twentieth century, was the first to give them a
precise definition and study them for their own sake, but they had already been used by
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Wigner and Steiz in crystallography, by Thiessen in geography, and even by Descartes
in astronomy. Delaunay [78] established most of the fundamental properties about the
triangulation that bears his name.

More recently, the connection between Voronoi diagrams and polytopes was discovered
by Brown [38] and by Edelsbrunner and Seidel [96]. The presentation in this book is based
on the works of Boissonnat, Cérézo, Devillers, and Teillaud [26] and of Devillers, Meiser,
and Teillaud [82]. The connection with polytopes answers exercise 17.4.

The optimality of the Delaunay triangulation was established by Rajan [193] for the
compactness, and by Lawson [144] for the equiangularity. Mount and Saalfeld [170] have
proposed an algorithm to compute a globally equiangular triangulation when the points
are not in Lo-general position. In the context of approximating surfaces by piecewise
linear patches, controlling the equiangularity serves to control the quality of the approxi-
mation even though it is more profitable to minimize the greatest angle as was shown by
Nielson and Franke [179]. The Delaunay triangulation does not generally minimize the
greatest angle, nor the total edge length, even though it often works well for practical
instances. Recent references on these topics can be found in the works of Edelsbrunner
and Tan [101], Edelsbrunner, Tan, and Waupotitsch [102], and Dickerson, McElfresh, and
Montague [83]. Rippa [195], and also Rippa and Schiff [194], gave other useful criteria in
the context of approximating surfaces for which the Delaunay triangulation is optimal.
Desnogueés [79] provides a good survey of polyhedral approximation.

An incremental algorithm that computes the Voronoi diagram of a set of points (see
exercise 17.10) was given by Green and Sibson [113]. The Delaunay tree introduced by
Boissonnat and Teillaud [31, 32] improves on the average performance when the sites are
inserted in random order. This algorithm was made fully dynamic by Devillers, Meiser,
and Teillaud [81]. An algorithm that proceeds by flipping diagonals was proposed by
Lawson [144], then dynamized in the plane by Guibas, Knuth, and Sharir {117] who
present a randomized analysis and also solutions to exercises 17.3 and 17.11. Its general-
ization to higher dimensions was studied by Joe [131, 132|, Rajan [193], and Edelsbrunner
and Shah [98], who provide a solution to exercise 17.13.

Lee proposed the first algorithm that computes Voronoi diagrams of higher orders in
the plane [145]. He also gave a solution to exercise 17.14. The connection between Voronoi
diagrams of order k and polytopes (exercise 17.15) was established by Aurenhammer [15].
Boissonnat, Devillers, and Teillaud [29] and also Mulmuley [174] proposed semi-dynamic
or even fully dynamic algorithms that compute the Voronoi diagrams of all orders up to &k
in any dimension. Clarkson [67], Aurenhammer and Schwarzkopf [18], and also Agarwal,
de Berg, and Matousek [2] gave randomized algorithms that compute Voronoi diagrams
of a single order k, rather than all the diagrams of orders < k.

The connection between Delaunay triangulations and Euclidean minimum spanning
trees (see exercise 17.16) is discussed in the book by Preparata and Shamos [192], where
one can also find a linear time algorithm that computes the Euclidean minimum spanning
tree knowing the Delaunay triangulation. Conversely, Devillers [80] gave a randomized
algorithm that computes the Delaunay triangulation of a set of n points in the plane
knowing its Euclidean minimum spanning tree in expected time O(n log™ n).

For other references on Voronoi diagrams, the reader is referred to the book by Okabe,

Boots, and Sugihara [182] or to the survey articles by Aurenhammer [16] and Fortune
[105].



