Chapter 18

Non-Euclidean metrics

In the previous chapter, we established a correspondence between the points
in E? and certain hyperplanes in E%t!, namely the hyperplanes tangent to the
paraboloid P. It is tempting to define the analogue of V(M) for a more general
set of hyperplanes that may not necessarily be tangent to P. In that case, the
intersection of the n half-spaces lying above the hyperplanes is again a polytope
whose proper faces, projected onto E¢, form a cell complex that covers E? en-
tirely. This complex generalizes the Voronoi diagram and can be considered as
the Voronoi diagram of a family of spheres, when the distance is defined as the
power of a point with respect to one of the spheres. This interpretation, to be
detailed in section 18.1, justifies the appellation power diagrams for such dia-
grams. These diagrams play a central role in several generalizations of Voronoi
diagrams: in particular, we explore affine diagrams, which are Voronoi diagrams
of point sites for a general quadratic distance (see section 18.2), and diagrams
for weighted distances (see section 18.3).

Not all Voronoi diagrams for different metrics can be cast into power diagrams.
For instance, polyhedral distances (and especially L; and L) have important
applications and are studied in section 18.4, and an application of hyperbolic
Voronoi diagrams (see section 18.5) is given in the next chapter.

The representation of spheres introduced and used in the previous chapter is
again very useful for computing power diagrams and hyperbolic Voronoi dia-
grams. In addition to this representation of spheres, we introduce in this chapter
a new way of looking at Voronoi diagrams that is helpful for studying weighted
diagrams, Ly and L, diagrams, and for the algorithms in the next chapter. In-
tuitively, the Voronoi diagram of a set M of points can be interpreted as the
result of a growth process starting with the points in M. Indeed, imagine crys-
tals growing from each point of M at the same rate in all directions. The growth
of a crystal stops at the points where it encounters another crystal, because of
the constraint that the crystals may not interpenetrate. The crystal originating
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at a point M; in M covers the region that is reached by that crystal first, or in
other words the points that are closer to M; than to any other point in M: this
is exactly the Voronoi cell of M;.

This growth process in E¢ can be visualized in E**! by adding another coordi-
nate, considered as the time elapsed since the start of the growth process. Thus
E? corresponds to the hyperplane ZTge1 = 0 1in E%!, and the isotropic growth of
a point M; is a cone of revolution with vertex M; and vertical (that is, parallel
to the z441-axis) axis. The faces of the Voronoi diagram appear as the projec-
tions onto E% of faces on the lower envelope of the cones. If the sites do not
start growing at the same time, the cones are translated vertically: this leads to
Voronoi diagrams with additive weights. If the sites do not grow at the same
rate, then the angles of the cones are different: the resulting Voronoi diagrams
have multiplicative weights. If the sites do not grow isotropically (namely at the
same rate in all directions), the cones are no longer cones of revolution: in this
way we can generate Voronoi diagrams for the L; and L., distances, and more
generally for polyhedral distances (see exercise 19.3).

Throughout this chapter, the “distances” we consider are not exactly distance

functions in the mathematical sense. In fact, we will only require that the distance
function is increasing.

18.1 Power diagrams

18.1.1 Definition and computation

Let S = {Z1,...,%,} be a set of n spheres in E%. To each T; corresponds a
region P(X;) of E%, consisting of the points whose power with respect to ¥; is
smaller than their powers with respect to the other spheres:

P(Zi) = {X €E? : Vj #i, i(X) < ;(X)}.

The region P(%;) is the intersection of a finite number of half-spaces (bounded
by the radical hyperplanes H;;, § = 1,...,n, j # t). It is therefore a convex
polytope, occasionally empty or unbounded. The P(X;)’s and their faces form a
cell complex which covers E%: this complex is called the power diagram of S and
we denote it by Pow(S) (see figure 18.1).

As in the previous chapter, we map a sphere X in E%, centered at C and of
equation £(X) = 0, to the point ¢(X) = (C, £(0)) in E4+1. The hyperplane polar
to ¢(¥) with respect to the paraboloid P is denoted by ¢(L)*: if E¢ is embedded
in E%*! as the hyperplane zq4y1 = 0, then ¢(X)* is the hyperplane that intersects
P along the quadric obtained by lifting X onto P (see figure 17.4).

Let P(S) be the intersection of the half-spaces bounded below by the polar
hyperplanes ¢(X1)*,...,¢(X,)* to the points ¢(X;),...,d(Zy,).
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Figure 18.1. A power diagram.

Theorem 18.1.1 The power diagram Pow(S) of a set S = {1,...,Zp} of n
spheres in E% is a cell compler in B, s faces are obtained by projecting
the proper faces of the unbounded (d + 1)-polytope P(S), the intersection of n
half-spaces in E4! bounded below by the polar hyperplanes ¢(X1)*, ..., d(Zn)*.

Proof. Let A be a point on a facet of P(S) which is supported by the polar
hyperplane ¢(X;)*, and let A be its projection onto E¢. The power of A with
respect to X; is the signed vertical distance from A to ¢(A4) (lemma 17.2.3). Since
A belongs to a facet of P(S), the power of A with respect to ¥; is less than or
equal to the power of A with respect to any other sphere in 8. In other words,
A belongs to the cell P(X;) that corresponds to ¥; in the power diagram. O

Note that when the hyperplanes ¢(%;)* are in general position, P(S) is a simple
polytope in E%*1 so each vertex is incident to d + 1 hyperplanes. In terms of
the spheres Y;, this general position assumption means that no subset of d + 2
spheres in S are orthogonal to a common sphere in E¢, or equivalently that no
point in E? has the same power with respect to d + 2 spheres in S. In this case,
we say that the spheres are in general position. The power diagram Pow(S) is a
cell complex whose vertices have the same power with respect to d + 1 spheres in
S (and are therefore the centers of spheres orthogonal to d + 1 spheres in §), and
have a greater power with respect to the other spheres in §. More generally, a
k-face in Pow(S) is formed by the points that have the same power with respect
to d + 1 — k given spheres in &, and a greater power with respect to the other
spheres in S.

Corollary 18.1.2 The complezity of the power diagram of n spheres in E¢ is
O(nl¥21). The diagram can be computed in time O(nlogn + nl¥/21), which is
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optimal in the worst case.

Remark 1. In the case of Voronoi diagrams, all the hyperplanes ¢(M;)* are
tangent to the paraboloid P, and each of them contributes a facet to V(M).
For power diagrams, however, a polar hyperplane ¢(X;)* does not necessarily
contribute a face to P(S). Such a hyperplane is called redundant. In the power
diagram, it means that the cell P(%;) is empty: ¥; does not contribute a cell to
Pow(S).

Remark 2. There is no particular difficulty if some, even all, the spheres in S,
are imaginary. This fact is used in section 18.3.2.

Remark 3. Any polytope in E4t! that is the intersection of upper half-spaces
corresponds to a power diagram: if Hy,...,H, are the hyperplanes that bound

these half-spaces, then their upper envelope projects onto the power diagram of
the spheres ¢~ 1(H}),..., o L (H}).

18.1.2 Higher-order power diagrams

As was done for Voronoi diagrams in section 17.4, we may define power diagrams
of higher orders.

Let Sy be a subset of S of size k. We call the power cell of Sy the set P(Sy)

of points in E? that have a smaller power with respect to any sphere in Sk than
to any sphere in S \ S, :

P(S;) ={X € E : VE; € Sk, VI; € S\ Sk, Ti(X) < X;(X)}.

Consider all the subsets of size k of S whose corresponding power cell is not
empty. These regions and their faces form a cell complex that covers E¢ entirely,
and that is called the power diagram of order k of S. We denote it by Powg(S).

This fact is a consequence of the theorem below, whose proof closely resembles
that of theorem 17.4.1. This theorem clarifies the links between power diagrams
of order k in E? and faces at level k in the arrangement of n hyperplanes in E¢+1,
As usual, the Euclidean space of dimension d is identified with the hyperplane
Zgy1 = 0 in the space E4t! of dimension d + 1, and ¢(X)* stands for the polar
hyperplane of ¢(X).

Theorem 18.1.3 Consider a set S = {X1,...,X,} of spheres in E¢, and let
A be the arrangement of their polar hyperplanes ¢(X1)*,...,d(X,)*. The power
diagram of order k, Powy(S), is a cell d-complex in E®. Its cells are the vertical
projections of the cells at level k in the arrangement A, the reference point being
on the zq441-axis above all the hyperplanes ¢(X;)*, i = 1,...,n. The l-faces of

Powg(S), | < d, are obtained by projecting the l-faces common to at least two
cells of A at level k.
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From theorems 14.5.1 and 14.5.3, we derive the following result.

Theorem 18.1.4 The complezity of the first k power diagrams of a set of n
spheres in E* is O(nl(a+1)/2]g[(d+1)/2)  These k diagrams can be computed in
time O(nL(d'*'l)/QJkr(dH)/ﬂ) if d > 3, and in time O(nk?log 2)ifd=2.

18.2 Affine diagrams

The notion of a Voronoi diagram can be extended to more general sites or to non-
Euclidean distances. A particularly interesting extension occurs when the locus
of points equidistant from two sites is a hyperplane: in this case, the diagram
is called an affine diagram. Voronoi diagrams and power diagrams are affine
diagrams, and we will show that any affine diagram is a power diagram. Moreover,
certain non-affine diagrams can be derived from an affine diagram and therefore
from a power diagram: this is notably the case of diagrams with additive or
multiplicative weights studied in section 18.3.

18.2.1 Affine diagrams and power diagrams

An affine diagram is a diagram defined for object sites and for a distance such
that the set of points equidistant from two objects is a hyperplane. The cells of
such diagrams are thus convex polytopes and affine diagrams can be identified
with cell complexes.

To any affine diagram of n objects corresponds a set of perpendicular

n
2
bisectors Hj;j, 1 < i < j < n. These hyperplanes must satisfy the relations

def
Hij N ij = Hij NHiyx =Hy N ij = Iijk
forany1<i<j<k<n.
We say that the diagram is simple if the I;;x are disjoint and not empty.

Theorem 18.2.1 Any simple affine diagram in E® is the power diagram of a set
of spheres in E%.

Proof. We embed E? in E%*! as the hyperplane z44; = 0. The proof consists
of constructing a set of n hyperplanes Py, ..., P, in E4t! such that the vertical
projection of P; N P; for i < j is exactly H;;. Assuming these hyperplanes are
known, to each P; corresponds a sphere ¥; = ¢~1(P}) whose polar hyperplane
is exactly P;: X is also the projection on EZ of the intersection of P; with the
paraboloid P. Hence H;j is the radical hyperplane of ¥; and ¥; for all 7 and j
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such that 1 < i < 7 < n. It follows that the affine diagram is exactly the power
diagram of the spheres ;,1=1,...,n.

We now show how to build the P;’s. Denote by h;; the vertical projection of
H;; onto P; (note that i < j by the definition of H;;).

Let us take for P; any non-vertical hyperplane, and for P> any non-vertical
hyperplane that intersects P; along hiz. For k > 3, we must take for Py the
hyperplane that intersects P along hjx and P, along hgg: such a hyperplane
exists because h1; and hog intersect along the affine subspace of dimension d — 2
that is the projection of I12¢ onto P, Py, or FPk.

It remains to see that the vertical projection of P; N P; is exactly H;;. By
construction, this is true for P1NP,, PINP;, and P,NP;, 72 3. For3 <i < j < m,
we know that P;NP;N P projects onto E¢ along I1;;, and that P;NP;NP; projects
onto E¢ along Io;;. The diagram being simple, I1;; and I2;; must be distinct. The
projection of P; N P; must therefore contain I1;; and Iz;;, and hence also their
affine hull which is nothing other than H;;. O

Below, we rather use
Theorem 18.2.2 The affine diagram whose hyperplanes H;; have equations
—2(Ci—Cj)'X+U1;—Uj =0

is the power diagram of the spheres ¥;, i = 1,...,n centered at C; and with
respect to which the origin has power o;.

Proof. We may simply check that the equation of H;; can be written as £;(X) —
3;(X) = 0, which is exactly that of the radical hyperplane of X; and X; (see
subsection 17.2.6). O

18.2.2 Diagrams for a general quadratic distance

Consider two points X and A in E<. By the general quadratic distance from A
to X, we mean the quantity

5a(X,4) = (X — A)A(X — A+ p(4),

where A is a real symmetric d x d matrix, and where p(A) is a real number.

The diagrams encountered so far are all particular cases of Voronoi diagrams
for a quadratic distance:

e Standard Voronoi diagrams are obtained for A = Iz and p(X) = 0.

e Furthest-point Voronoi diagrams (introduced as diagrams of n points of
order n — 1) are obtained for A = —I; and p(X) = 0.
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e Power diagrams correspond to A =I; and p(X) # 0.

For any pair of points A and B, the set of points X that are equidistant from
A and B is the hyperplane H 4p equation

Hap : 2(B— AJAX' + AAA* — BAB' + p(A) — p(B) = 0.

The Voronoi diagram of a finite set of points for a general quadratic distance is
thus an affine diagram by theorem 18.2.2.

Theorem 18.2.3 The Voronoi diagram of n points for an arbitrary general
quadratic distance in B has complezity O(n!#21). It can be computed in time
O(nlogn + nld/2]),

18.3 Weighted diagrams

This section introduces two kinds of diagrams which are not affine. They are
defined for finite sets of point sites and for a Euclidean distance that is weighted
additively or multiplicatively. Each distance is appropriately defined in the sub-
section below.

These diagrams are not cell complexes those we have been studying so far.
Nevertheless, they can be given a facial structure that is similar to that of cell
complexes. Consider the equivalence relation shared by the points in E¢ that have
the same nearest neighbors. The equivalence classes subdivide E¢ into (open)
regions whose closures we call the faces of the diagram. The cells of the diagram
span E¢ entirely and the intersection of two faces is a (possibly empty) collection
of lower-dimensional faces.

As we see below, the faces of these diagrams are not polytopes, and may not
even be connected. Nevertheless, these weighted diagrams can be derived simply
from power diagrams.

18.3.1 Weighted diagrams with additive weights

Let M = {Mj, ..., M,} be aset of n points in E¢. To each M; corresponds a real
r; called the weight of M;. The additive weighted distance, or additive distance
for short, from a point X in E? to M; is the quantity

b+ (X, My) = || X M;|| — mi.

The diagram of M with additive weights is defined like the Voronoi diagram
except that the distance used is not the Euclidean distance but the additive
distance defined above. This diagram is denoted by Vor,(AM). An instance is
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b

Figure 18.2. A diagram with additive weights. Sites are the centers and their correspond-
ing weights are the radii of the circles. In this example, the diagram of the
points with additive weights is also the Voronoi diagram of the circles for the
Euclidean metric.

shown in figure 18.2. We observe that it is the first example of a non-affine
diagram shown in this book.

Note that adding the same constant to all the points does not modify the
diagram. This lets us assume that all the r;’s are non-negative.

The representation of spheres introduced in section 17.2 is not very helpful here
and we use another which shows a very natural correspondence between weighted
Voronoi diagrams and affine diagrams in dimension d + 1.

Consider the sphere X; in E¢ centered at M; with radius r;, and let ¥ be the
bijection that maps ¥; to the point ¥(X;) = (M;,r;) € E4TL,

The spheres of zero radius correspond to the points in the hyperplane of equa-
tion z4y3 = 0 in E¢+1,

The points at additive distance r from M; can be considered as the centers of
the spheres of radius |r| tangent to X;, that are inside or outside ¥; according to
whether r is negative or positive. The images under 1 of these spheres generate
a cone of revolution C(Z) of equation

C(T) : Tap1 = | XC| -7

which has apex (C, —r), is symmetrical to ¥(X) with respect to the hyperplane
z4+1 = 0, and has an aperture angle of 7. The vertical projection Ix of a point
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X in E% on the cone C(X) is the image under 9 of the sphere centered at X and
tangent to X. The signed vertical distance from X to Ix equals the additive
distance from X to C weighted by r.

To each sphere X;, i = 1,...,n, corresponds the cone C(X;), also denoted by
C;. It follows from the discussion above that the projection of the lower envelope
of the cones C; onto E? is exactly Vor,(M).

The set of points in E? that are equidistant (with respect to the additive dis-
tance) from two points of M is thus the projection of the intersection of two
cones. This intersection is a quadric contained in a hyperplane. Indeed, we have

Ci: (Tap1+m)® = XM}, z441+71>0,
Ca : (Td+1 +T2)2 = XM22, ZTgy1 + 12> 0.

The intersection of the two cones is contained in the hyperplane Hjo whose equa-
tion is obtained by subtracting the two sides of the above equations:

Hys 1 —2(My — Ms) - X —2(r1 —r9)zapy + MF —r} — M2+ 13 =0.

This and theorem 18.2.2 show that there exists a correspondence between the di-
agram Vor, (M) and the power diagram of the spheres &} in E4*! (i = 1,...,n),
where X/ is centered at ¢/(Z;) and has radius r;v/2 (see figure 18.3). More pre-
cisely, the cell of Vor, (M) that corresponds to M; is the projection of the inter-
section of the cone C; with the cell of the power diagram corresponding to the
sphere ¥;. Indeed, X is in Vory(M;) if and only if the projection X; of X onto
C; has a smaller z441-coordinate than the projections of X onto the other cones
Cj, j # i. In other words, the coordinates (X, z441) of X; must obey

(Tar1 +1i)° = XM}
(zd+1 + rj)2 < XMj2 for any j # 1,
and by subtracting both sides, it follows that X{(X;) < ¥7(X;) for all 5.
The additive diagram can be computed using the following algorithm:
1. Compute X}, fori=1,...,n.
2. Compute the power diagram of the ¥}’s.

3. Foralli =1,...,n, project onto E?® the intersection with the cone C; of the
cell of the power diagram that corresponds to X.

The power diagram of the X} can be computed in time O(nl%2+1). The inter-
section involved in step 3 can be computed in time proportional to the number
of faces of the power diagram of the X!’s, which is O(nl%2+1). We have thus
proved that:
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Figure 18.3. Any Voronoi diagram for the additive distance can be derived from a power
diagram in E¢*!.

Theorem 18.3.1 The Voronoi diagram of a set of n points in E* with additive
weights has complezity O(nl?/2141Y and can be computed in time O(nl?/241),

This result is optimal in odd dimensions, since the bounds above coincide with
the corresponding bounds for the Voronoi diagram of points under the Euclidean
distance. It is not optimal in dimension 2, however, as we now show. We also
conjecture that it is not optimal in any even dimension.

In the plane, we have seen that additive diagrams can be thought of as the
projection onto E2 of the lower envelope of cones with vertical axis and aperture
angle 7. Therefore, each cell is connected. Moreover, the vertices of the diagram
are incident to exactly three edges, under the general position assumption, and
these edges are arcs of hyperbolas, each of which is the projection of the inter-
section of two cones. Euler’s relation shows that the diagram has complexity
O(n). A perturbation argument shows that the general position assumption is
not restrictive, since allowing degeneracies only merges some vertices and makes
some edges disappear. In section 19.1, it is shown that such a diagram can be
computed in optimal time O(nlogn).

18.3.2 Weighted diagrams with multiplicative weights

Let M = {M,...,M,} be a set of n point sites in E®. To each M; corresponds a
positive real number p(M;) called the weight of M;. To simplify the presentation,
we suppose that the p(M;)’s are all distinct, but the extension to the more general
case presents no additional difficulties.
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Figure 18.4. A diagram with multiplicative weights. Sites are represented by small disks,
and the weight of a site is inversely proportional to the diameter of the disk.

By the distance with multiplicative weights, or multiplicative distance for short,
from a point X to a point M;, we mean the quantity

64(X, M;) = p(M;) || X Myl

The Voronoi diagram of M for the multiplicative distance is defined like the
Voronoi diagram, except that the distance is not the Euclidean distance but
rather the multiplicative distance. We denote this diagram by Vor.(M) (see
figure 18.4). Observe that a cell of the diagram need not be connected.

The set of points at equal multiplicative distance from two sites M; and M; is
a sphere X;; of equation

pi (X ~ M;)* = p; (X ~ M;)?
with p; = p(M;)?. In normalized form, we obtain

piMi —piM; o M —p M7

X249 =0.
Pi— Dy Di — Pj

Using the representation of section 17.2, this sphere is represented in E4*! as the

point
(piMi —p;M; piM7— ijJ2)

#(Zy5) =

)

Pi—pj Pi— Py
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Its polar hyperplane H;; with respect to the paraboloid P has equation
Hij(X,z441) = (pi — pj)Tas1 — 20:M; - X + 2p; M - X + piM}? — p; M7 = 0.

The hyperplanes H;; are the radical hyperplanes of spheres &; in E**! (i =
1,...,n). The sphere ¥;, possibly imaginary, is centered at (p;M;,—&), and
with respect to it the origin has power p;M? . This establishes a correspondence
between the diagram Vor.(M) and the power diagram of the spheres ¥;. More
precisely, the cell V,(M;) in Vor.(M) that corresponds to M; is the projection of
the intersection of the paraboloid P with the cell P(%;) that corresponds to %;
in the power diagram of the T;’s. Indeed, if X is a point in E¢ and ¢(X) is its
vertical projection onto the paraboloid P of equation z4,; = X2, then we have

X eVa(M)) & pi(X—M)?<pi(X—M;)® Vj#i
&= Hiji(X,X) <0  Vj#i
= Li(d(X)) <Zj(e(X))  ViFi
& ¢(X) e P(L%;).

An algorithm that computes the diagram of M with multiplicative weights is:
1. Compute ¥;, fori =1,...,n.
2. Compute the power diagram of the ¥;’s.

3. For i =1,...,n, project the intersection of the cell that corresponds to %;
in the power diagrams of the ¥;’s with the paraboloid P.

This proves the following theorem.

Theorem 18.3.2 The Voronoi diagram of a set of n points in E? with multiplica-
tive weights has complezity O(nl¥21+1) gnd can be computed in time O(nl¥/2+1),

T Y= = = =
== .

Figure 18.5. An instance of a quadratic multiplicative diagram in dimension 2: Z points
are put on a given vertical line and are given the same weight, while 3 other
points are aligned on a horizontal line and have the same weight, which is
much larger than the weight given to the points in the first half.

This result is optimal in odd dimensions, since in that case these bounds match
those of the Voronoi diagram of n points in E? for the Euclidean distance. It is
also optimal in even dimensions (see exercise 18.4). Figure 18.5 shows a quadratic
multiplicative diagram in dimension 2.
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N
N 2

Figure 18.6. Co-cubes in dimensions 2 and 3.

18.4 [L; and L, metrics

The L, distance of a point X = (z1,...,24) in E% to a point M = (my,...,mq)
in E? is defined as

d
Su(X, M) =) |ai — my|.
i=]1

The points at a given distance r from M are thus on a polytope whose vertices
are given by their coordinates z; = m;£r and z; =m;ifi# j, for j=1,...,d.
In dimension 2 this polytope is a tilted square, and in dimension 3 it is a regular
octahedron (see figure 18.6). This polytope is dual to the cube and we call it a
co-cube. Henceforth, a co-cube always means a polytope dual to a cube whose
edges are parallel coordinate axes.

Let M = {My,..., M} be a set of n point sites in E%. The Voronoi diagram
of M for the Ly distance is defined similarly to the Voronoi diagram, except that
the distance used in the definition of the cells is not the Euclidean distance but
the L; distance. It is denoted by Vorp, (M) (see figure 18.7).

We can define a facial structure for this diagram by using the equivalence rela-
tion R shared by the points in E? that have the same subset of nearest neighbors.
The equivalence classes of R subdivide the space E? in open regions whose clo-
sures are called the faces of the diagram. The faces of the diagram are piecewise

affine.

If the points in E? are identified with the hyperplane z4,; = 0 in E%*!, then,
in a way similar to what was explained in subsection 18.3.1, to each point M;
there corresponds a pyramid P; of equation

Tdg41 = 61(X, M,)
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Figure 18.7. Diagram for the L1 metric.

Let us consider the lower envelope of the P;’s, that is, the graph of the func-
tion minj<i<p 61(X, M;). The portion of the lower envelope that belongs to any
Pi projects onto the hyperplane z411 = 0 as the cell of the diagram Vorr, (M)
that corresponds to M;. The facets of the P;’s form a collection of d-pyramids.
The lower envelope of these pyramids is a collection of d-faces, and their lower-
dimensional faces include all the lower-dimensional faces of the lower envelope of
the P;’s. The vertical projections onto z44+1 = O of the d-faces of the lower en-
velope of the pyramids form a refinement of the faces of the diagram Vory, (M).
The complexity of the diagram Vorr, (M) can thus be bounded by combining the-
orem 16.3.2 and exercise 16.1, which bound the complexity of the lower envelope
of n d-simplices in E4+1. This yields

[Vorr, (M)| = O(n%a(n)).

This bound is almost tight for certain sets of points that are not in general
position (see exercise 18.9). We conjecture, however, that for points in general
enough position, this bound is not attained and that these diagrams have the
same complexity as their Euclidean counterparts. Later on, we show that this is
indeed the case in dimension 2, for which we give a linear bound. It is also the
case in dimension 3 (see exercise 18.10). If d = 2, the bisector for the L;-distance
of two points is, in general, a polygonal line formed by three linear pieces; if the
line connecting the two points is parallel to one of the main bisectors, however,
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Figure 18.8. Bisectors for the L, distance. If the line connecting the two points is parallel
to one of the main bisectors, the bisector is not a polygonal line.

the Li-bisector is no longer a polygonal line and contains two faces of dimension
2 (see figure 18.8).

We say that two points are in L -general position if no two points are connected
by a line parallel to one of the main bisectors, and if no four points belong to
a common co-cube. In this case, the bisectors are polygonal lines formed of
three line segments, and Vorr,(M) contains n connected cells: indeed, for any
i €{1,...,n}, the cell V;(M;) that corresponds to a point M; is star-shaped with
respect to M; (meaning that if X € V;(M;), then the segment X M; is contained
in V1(M;)), and is therefore connected. Moreover, each vertex in the diagram
is incident to two or three edges because of the L;-general position assumption.
The diagram Vorr, (M) is therefore a planar map with n cells whose vertices have
degree two or three and whose edges consist of at most three segments. Euler’s
relation then shows that the complexity of the diagram is O(n).

If the points are not in L;-general position, then some regions may correspond
to pairs of points (see figure 18.8) and some vertices may be of degree higher than
3. This second complication can be straightened out by simply perturbing the
diagram so as to replace each vertex of degree £ > 3 by a small polygonal chain
with k£ — 2 vertices of degree 3 and k£ — 3 edges. The number of faces does not
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increase in the process, and the number of vertices increases by the same amount
as the number of edges; hence Euler’s relation still guarantees that the complexity
of the diagram is O(n). The first complication, however, is more serious and may
allow the size to grow up to quadratic: exercise 18.9 presents such an example
and a way to avoid this problem. The example generalizes to higher dimensions
and the lower bound ©(n?) may be shown to hold for the complexity of Voronoi
diagrams of n points in E? for the L; distance.

If the points are in L;-general position, the complexity of the diagram is thus
O(n) in dimension 2 and the algorithm that computes the lower envelope of n
triangles in space (see subsection 16.3.3 ) can be used to compute this diagram
in time O(nlog®n) (see corollary 16.3.3). An optimal algorithm exists that com-
putes such a diagram in time O(nlogn) (see exercise 19.2).

The situation for the Lo, distance is very similar to the one just described for
the L, distance. Its complexity in dimensions higher than 3 is easier to analyze,
however. The Lo distance of a point X = (x1,...,24) in E% from a point
M = (my,...,my) in E¢ is given by

600(XaM) = max |x'c —mi|'

! f==

yerey

The points at a distance r from M are thus on a cube centered at M whose facets
are parallel to the coordinate axes, and whose side is 2r.

The Voronoi diagram of M for the Lo, distance is denoted by Vorg_ (M). An
instance is shown in figure 18.9.

The cells of this diagram can be obtained by projecting onto the hyperplane
#g+1 = 0 in E9H1 the cells on the lower envelope of the n pyramids Q; of equation

Tg+1 = 500(X7 Ml)

The facets of the Q;’s form a collection of d-pyramids. The faces on the lower
envelope of these pyramids form a refinement of the faces on the lower envelope
of the Q;’s. Hence, the vertical projections onto the hyperplane z4,1 = 0 of the
faces on the lower envelope of these pyramids form a refinement of the faces of
the diagram Vory_ (M). The complexity of the Voronoi diagram Vory_ (M) is
thus bounded by the complexity of a lower envelope of n simplices in E4*+1:

Vorr., (M)| = O(nfa(n)).

This bound is almost tight for certain sets of points that are not in general
position (see exercise 18.9). If the points are in so-called Loo-general position,
then it is possible to show that the complexity of Voronoi diagrams for the L
metric is the same as that for Euclidean Voronoi diagrams, namely O(n/%/21) (see
exercise 18.10). We show this for the case d = 2. When d = 2, Vorg__ (M) can
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Figure 18.9. Diagram for the Lo metric.

be identified with the diagram Vory, (M) studied previously by simply rotating
the coordinate system by an angle of 7. The points are in L-general position,
if no two points are connected by a line parallel to the coordinate axes, and no
four points belong to a common cube whose facets are parallel to the coordinate
axes. If so, then the complexity of Vory (M) is O(n) in dimension 2, and the
algorithm described in subsection 16.3.3 that computes the lower envelope of
triangles can be used to compute this diagram in time O(nlog?n) (see exercise
19.2 for a better algorithm).

The distances considered here, L; and L, are particular cases of polyhedral
distances, so-called because their unit ball is a polytope. Voronoi diagrams for
polyhedral distances are studied in exercise 19.3.

18.5 Voronoi diagrams in hyperbolic spaces

18.5.1 Pencils of spheres

A pencil of spheres in E? is a set S of spheres that are affine combinations of two
given spheres ¥; and Xq:

F={Z:3IAeR, VX € E%, E(X)=AD1(X) + (1 - N)Z2(X)}.
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If we apply to spheres the mapping ¢ introduced in section 17.2, we map the
spheres in E? to points in E*t1. From the results of section 17.2, it follows that
the image under ¢ of a pencil F is the line ¢(F) in E¢*! that connects the points
¢(X1) and ¢(X2).

We may distinguish between four kinds of pencils, according to whether the
line that is the image under ¢ of the pencil intersects the paraboloid in one point
(transversally), in two points, is tangent to P, or does not intersect P (see figure
18.10).

o If ¢(F) intersects P transversally in only one point, then F contains a single
sphere of zero radius, and ¢(F) is a pencil of concentric spheres.

e If the line ¢(F) intersects P in two points, F contains two spheres of radius
zero, called the limit points of the pencil.

o If the line ¢(F) is tangent to P, then F may be considered as a pencil
whose two limit points are identical, or as a pencil supported by a sphere
that reduces to a point. Such a pencil is called a tangent pencil.

e If the line ¢(F) does not intersect P, there exists a family of hyperplanes
tangent to P that contain ¢(F). Let ¢(X ) be the set of points of P at
which these hyperplanes are tangent to P. Then ¢(X ) is the image under
¢ of the set L of points that belong to all the spheres in the pencil F.
Coming back to the definition of a pencil, we have £(X) = 0 for all values of
), and this implies that X1(X) = X2(X) = 0 and that ¥ can be identified
with the (d — 1)-sphere £; N X2. All the d-spheres in the pencil F intersect
along the (d — 1)-sphere obtained as the intersection of any two spheres in
the pencil. For this reason, Z» is called the supporting sphere of the pencil.

The very definition of a pencil of spheres implies that any point in the radical
hyperplane Hjz of two spheres ¥; and X3 in the pencil has same power with
respect to any sphere in the pencil. We may therefore define the radical hyperplane
of a pencil of spheres as the radical hyperplane of any two spheres in the pencil.

The radical hyperplane of a pencil supported by a sphere is the affine hull of the
supporting sphere. A concentric pencil has no radical hyperplane. The radical
hyperplane of a pencil with limit points is the perpendicular bisector of these two
points. The radical hyperplane of a tangent pencil is the hyperplane tangent to
all the spheres in the pencil.

18.5.2 Voronoi diagrams in hyperbolic spaces

The Poincaré model of the hyperbolic space of dimension d is the half-space
He = {X € B¢ : 24> 0}. We will not define the hyperbolic distance precisely.
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Concentric pencil Pencil with two limit points
Tangent pencil Pencil with supporting sphere

Figure 18.10. The four kinds of pencils.
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Figure 18.11. B is closer to A for the hyperbolic distance than C is.

The interested reader will find a more precise account in the classical references
on the topic ([22] for instance). To define the hyperbolic diagram, it suffices to
decide, given three points A, B, and C in H% whether B or C is closer to A.
For this, we consider the pencil F 4 of spheres with limit points 4 and A’, where
A’ denotes the symmetric of A with respect to the hyperplane Hy of equation
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Figure 18.12. A hyperbolic Voronoi diagram in the Poincaré half-space.

zg = 0. (Note that Hp is the radical hyperplane of F 4.) We say that B is closer
to A for the hyperbolic distance if the sphere in F 4 that passes through B has a
smaller radius than the sphere in F4 that passes though C (see figure 18.11).!

Given aset M = {Mj,..., My} of n points in the Poincaré half-space H?, there
corresponds a region V;(M;) in H? to each point M; in M. This region consists
of the points in H® that are closer to M; than to any other point in M:

Vi(M;) = {X € HY, (X, M;) < 8p(X, M;) for any j # 4},

The Voronot diagram for the hyperbolic distance of M, also called the hyper-
bolic diagram of M, is the subdivision of the Poincaré half-space induced by
the equivalence relation shared by the points that have the same nearest neigh-
bors for the hyperbolic distance. The faces of the diagram are the closures of
the equivalence classes. The Vi(M;)’s form the cells of the diagram (see figure
18.12).

Vi(M;) is the set of points X € H? that have M; as a nearest neighbor. Since
the locus of points in H® at a given hyperbolic distance from a given point A € T4
is a sphere of the pencil F 4, it follows that, for any point X in Vj(M;), the interior
of the sphere in the pencil Fx that passes through M; contains no point of M.

We can also embed H? into E4t! by identifying it with the half-hyperplane
Zgy1 = 0, zg4 > 0. The hyperplane Hy is therefore identified with the subspace
{x4+1 = t4 = 0}. The pencil Fx is mapped by ¢ into a line in E**! parallel to
the z4-axis. Indeed, if X’ is the symmetric of X with respect to Hy, the pencil F x
has limit points at X and X’ that are mapped by ¢ to ¢(X) and to #(X'), and
both these images are symmetric with respect to the hyperplane x4 = 0 in E+L
This implies that a point X belongs to Vi (M;) if and only if the ray parallel to the

Tt is tempting to define the hyperbolic distance from A to a point B as the radius of the
sphere in F 4 that passes through B. This “distance” is not symmetric, however, and is not the
true hyperbolic distance defined for instance in {22]. Nevertheless, in what follows, taking the
pseudo-distance to be this radius or indeed any other increasing function of this radius leads to
the same diagram.
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Figure 18.13. X belongs to Vi(A) (d=1).

Tq-axis in E4T! originating at ¢(X) (which is entirely contained in the paraboloid
P) and directed towards x4 > 0 intersects the hyperplane ¢(M;)* polar to ¢(M;)
before any of the other polar hyperplanes ¢(M;}* (see figure 18.13).

This observation has important consequences:

1. The bisecting surface of two points for the hyperbolic distance is a half-
sphere: indeed, a point X is equidistant from A and B if and only if Fx contains
a sphere that passes through A and B, that is, if and only if ¢(Fx) inter-
sects ¢p(A)* N ¢(B)*. In other words, ¢(X) belongs to I', the projection of
$(A)* N ¢(B)* parallel to the z4-axis onto the paraboloid P (more exactly, the
half of the paraboloid that is in the half-space z4 > 0). But I is the intersection
of P with a hyperplane H in E%*! parallel to the z4-axis. Its vertical projection
onto z44; = 0 is a sphere X 4p (lemma 17.2.2), centered on Hy by symmetry.
Moreover, X 4p belongs to the pencil with limit points A and B. Indeed, the
spheres in this pencil are mapped by ¢ to the points

P(Z) = Ad(A) + (1 — A)g(B).
The corresponding polar hyperplanes have equations
¢(Z)* = Ag(A)" + (1 - N)¢(B)",

and they are all the hyperplanes that contain ¢(A)* N¢(B)*. H is thus a hyper-
plane polar to a sphere in the pencil F 4p that has two limit points A and B.
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But H is the hyperplane polar to ¢(Xap) (see lemma 17.2.2). As a result, X ap
belongs to F op. Finally, ¥ ap is the unique sphere in F 4p that is centered on
Hy.

2. A point X is equidistant from d + 1 points Ay, ..., Ay if and only if ¢(X)
is the projection of ﬂfzo ¢(A;)* parallel to the z4-axis, onto the half-paraboloid.
The point at equal hyperbolic distance from d + 1 points is the limit point of
the pencil that contains the sphere circumscribed to the d + 1 points of radical
hyperplane Hp.

3. The hyperbolic Voronoi diagram can be obtained by projecting the poly-
tope V(M) = N, ¢(Ai)* parallel to the z4-axis onto the half-paraboloid, then
projecting the result vertically onto the hyperplane 441 = 0. Note that the
projection parallel to the x4-axis does not map all the points of V(M) onto the
half-paraboloid. This double projection establishes an injective correspondence
between the Euclidean and the hyperbolic Voronoi diagrams of M. More di-
rectly, these two projections can be avoided by performing the single following
transformation. Replace the planar (d — 1)-faces of the Euclidean diagram that
are (at least partly) contained in the half-space z4 > 0, by the corresponding
portions of spheres (hyperbolic bisectors limited to z4 > 0); a k-face (k < d — 1)
of the Euclidean diagram is the intersection of d — k+ 1 planar (d — 1)-faces, and
is replaced by the portion of surface that is the intersection of the d—k+1 corre-
sponding spherical faces. From the injective correspondence between Euclidean
and hyperbolic diagrams, we deduce the following theorem.

Theorem 18.5.1 The complexity of the hyperbolic Voronoi diagram of n points
in the hyperbolic Poincaré half-space H¢ is ©(nl4?1). Such a diagram can be
computed in time O(nlogn + nl4/21),

18.6 Exercises

Exercise 18.1 (Greatest empty rectangle) Let X and A be two points in E>. The
quadratic distance 6g(X, A) is defined as

So(X, A) = (X — AA(X — A) with A=((1) (1))

Show that 6g(X, A) is the area of the rectangle whose sides are parallel to the coordinate
axes and of which A and X are two opposite vertices. Given a set S of points in the
plane, show that its diagram for this quadratic distance function can be used to compute
the rectangle of greatest area whose sides are parallel to the coordinate axes, whose sides
each contain at least one point of S, and whose interior does not contain any point of S.

Hint: To find a greatest empty rectangle, use a divide-and-conquer algorithm. The
merge step consists in finding the greatest empty rectangle intersected by the separating
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line. The greatest empty rectangle for which three points of contact lie on one side of
the separating line (and the fourth on the other side) can be found easily. Two points of
contact on one side of the separating line define a corner of the rectangle, and the corners
of empty rectangles are the so called maxima and can be found in O(nlogn) time. The
greatest empty rectangle with two points of contact on either side of the separating line
is defined by an opposite pair (A, B) of maxima such that the segment connecting them
is an edge of the affine diagram defined for the generalized quadratic distance ég(A, B).
The complexity of the merge step is O(nlogn), hence the total algorithm runs in time
O(nlog? n).

Exercise 18.2 (Lower envelope of cones) Show that the lower envelope of n vertical
cones of revolution in E¢ has complexity O(nld/ 2j+1) and can be computed in time
O(nl9/2]1+1)_ If the vertices of the cones are all contained in a given horizontal hyperplane,
and if their angles are all identical, then the complexity of the lower envelope drops to

O(nt%"lj) and it can be computed in time O(nlogn + al %] )-

Exercise 18.3 (Spheres and disks) According to the general definition of Voronoi
diagrams, we may define the Voronoi diagram of a set of disks Dy,...,D, as usual,
where the distance of a point X from a disk D; centered at C; and of radius r; is defined
by

dS(Xa D't) = max((), "XC'L” - T‘-,;).

Show that the Voronoi diagram of n disks in E¢, where d > 3, has complexity O(nl4/21+1)
and that it can be computed in time O(nl%/2/+1), If d = 2, show that these bounds are
O(n) and O(nlog n) respectively.

Hint: To each Cj, give a weight r; and compute the diagram of the disks knowing the
additive diagram of their centers. In the discussion of subsection 18.3.1, the cone C;,
i=1,...,n must be replaced by the same cone truncated by the halfspace £44+1 > 0.

Exercise 18.4 (Diagrams with multiplicative weights) Show that Q(nl4/2/+1) is
a lower bound on the complexity of the Voronoi diagram of n points in E¢ with multi-
plicative weights.

Hint: Generalize the example of figure 18.5.

Exercise 18.5 (Regular complex) Let C be a d-complex in E¢. We say that C is
regular if it can be obtained as the vertical projection of a polytope in E4*!, Show that
C is regular is and only if it is a power diagram. Show that any simple complex (meaning
that its cells all consist of simple polytopes) is regular (the best-known examples are
arrangements of hyperplanes in general position). Devise an algorithm that determines
whether a complex is regular and, if so, computes the corresponding polyhedron.

Hint: Use theorem 18.2.1. For hyperplane arrangements, the connection with zonotopes
is particularly helpful (see exercise 14.8).
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Exercise 18.6 (The inverse problem) Show that it is possible to determine whether
a complex is a Voronoi diagram and, if so, to compute the corresponding sites in time
linear in the total complexity of its cells.

Exercise 18.7 (Spider webs) By a spider web, we mean the 1-skeleton of a 2-complex
that covers E2. Show that if the spider web is the skeleton of a power diagram, then we
can assign a tension to each edge such that each vertex is in an equilibrium state.

Hint: For the tension of an edge, take the length of the dual edge. An edge and its
dual edge are perpendicular, and the dual edges of the edges incident to a vertex S form
a cycle that we orient counter-clockwise. At a vertex S, the sum of the tensions equals
the sum of the vectors of the dual edges, so that the total tension vanishes at the vertices.

Exercise 18.8 (Cubes and co-cubes) Show that in E*, several homothetic cubes or
co-cubes may pass through four points even though these points are in L.-general po-
sition.

Exercise 18.9 (Degenerate positions for L; and L., distances) Show that in E2,
the Voronoi diagram for the L metric of points that are along one of the main bisectors
is quadratic. Show that if the bisector of two points on a line parallel to one of the main
bisectors is redefined as the Euclidean perpendicular bisector, then the complexity of
the diagram becomes linear, and a cell is formed by the set of points that share exactly
one common nearest neighbor for the L; distance (but do not necessarily have the same
subset of nearest neighbors). Generalize the example above to show that Q(n?) is a lower
bound on the complexity of a Voronoi diagram of n points in E? for the L; metric. Also
give similar results for the L., metric.

Exercise 18.10 (Complexity of Vory_) Show that the complexity of a Voronoi dia-
gram for the L., metric of a set M of n points in E? in Loo-general position is O(nl4/21),

Hint: It suffices to bound the number of so-called maximal placements of a maximal
cube whose facets are perpendicular to the coordinate axes, and whose interior contains
no point of M. A contact is a pair formed by a facet of such a cube and by a point in M. A
placement realizes a contact of multiplicity k£ at a point if this point belongs to k facets of
the corresponding cube. If £ = 1, the contact is said to be simple. For a given maximal
placement, the sum of the multiplicities of the points of contact is d + 1. First show
that any maximal placement realizes two contacts, called parallel contacts, whose facets
are parallel. We say that a maximal placement is reducible if at least one of its parallel
contacts is simple and if the other does not have multiplicity d. Show then that it suffices
to bound the number of irreducible maximal placements. For this, charge a reducible
placement to an irreducible one by applying the following procedure as many times as
needed: Scale up the cube by a homothety centered at one of its vertices that lies on a
facet involved in some parallel contact. In this way we obtain a smaller cube contained
in the preceding one but whose multiplicity is increased for at least one of the contacts.
Show that an irreducible placement is charged by at most O(1) reducible placements.
Finally show that the number of irreducible placements is O(n[d/ 21). For this, notice
that the centers of such placements belong to some affine subspace of dimension at most
d — 3. In this subspace, the centers of maximal placements correspond to the vertices of
a union of n cubes of same size, so we may use the result of exercise 4.8.



18.7. Bibliographical notes 457

Exercise 18.11 (Simplicial distance) Let S be a (d + 1)-simplex in E? that contains
the origin O. We denote by AS the image of this polytope under the homothety centered
at O and of ratio A. The simplicial distance és(X, A) from point X to point A is defined
as the smallest real A > 0 such that X — A belongs to AS. Show that the complexity of
a Voronoi diagram for a simplicial distance of a set M of n points in E¢ is O(n/%/21).

Hint: We define a reducible placement of S as in exercise 18.10: it is a placement that
has several simple contacts. The number of irreducible placements is O(n[4/21) and we
can also show that the same bound holds for the reducible placements.

Exercise 18.12 (Hyperbolic bisector) Show that the equation of the hyperbolic bi-
sector L 4p of two points A = (a;,...,aq4) and B = (by,...,bg) is

(@g — ba)X - X + 2(bgA — agB) - X —bgA- A+ ayB-B =0.

Exercise 18.13 (The Poincaré disk) Rather than using the Poincaré half-space H?
as a model of the hyperbolic space, we introduce the Poincaré disk D which can be derived
from H? by a homographic transformation. More precisely, if the Poincaré half-space is
identified with the complex half-plane {z € C,Imz > 0}, the homographic map defined
by

z—1

h(z) z+1

is a bijection from H? into D. Show that the edge that joins two points remains a circle
centered on the boundary of I, and also that the points at equal distance from A are
on a circle that belongs to the pencil that has A as a limit point and that contains the
bounzda,ry of . From this, explain how to compute the Voronoi diagram of a set of points
in H”.

Exercise 18.14 (Dual of a hyperbolic diagram) Show that we may dualize the hy-
perbolic Voronoi diagram of a set of points M in H* by projecting the convex hull of
@(M) parallel to the z4-axis onto the half-paraboloid, and then projecting the result of
this first projection onto the hyperplane z441 = 0. Show that this dual is in bijection
with a sub-complex of the Delaunay complex.

18.7 Bibliographical notes

Power diagrams were studied by Aurenhammer [14] and by Imai, Iri, and Murota [129].
Affine diagrams are defined in [17] by Aurenhammer and Imai, who also show their con-
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then by Lee and Drysdale [147]. The generalization to general convex distances is tackled
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by Chew and Drysdale [61]. Voronoi diagrams for the L; and Ly, metrics in dimensions
3 and higher (see exercise 18.10) and also simplicial distances (see exercise 18.11) are
treated by Boissonnat, Sharir, Tagansky, and Yvinec [34]. In the plane, Klein proposes
a notion of abstract Voronoi diagram [139] and Klein, Mehlhorn, and Meiser describe a
randomized algorithm that computes such diagrams [141].

Diagrams for the hyperbolic distance are studied by Boissonnat, Cérézo, Devillers, and
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