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Abstract

In this thesis we propose an algorithm for reconstructing a multi-label object from
cross-sections in a fair manner. We handle the problem in its full generality: Cross-
sections need not be parallel nor complete, every section may contain an unlimited
number of contours with any geometries and in any level of containment hierarchy.
We focus on the simultaneous reconstruction of an object from contours with
multiple labels (“colors”), in scenarios in which interpolating separately between
contours of each color results in conflicting (intersecting) reconstructions. We
suggest a flexible scheme for combining all the individual reconstructions and

resolving fairly the conflicts between them.






Chapter 1

Background

1.1 Introduction

The problem of reconstructing the boundary of a solid object from a series of
parallel planar cross-sections has attracted much attention in the literature during
the past 35 years. The main motivation for this problem comes from medical
imaging applications, where cross-sections of human organs, including all kinds of
tissues, are obtained by CT (Computed Tomography), MRI (Magnetic Resonance
Imaging), etc. These cross-sections are the basis for interpolating the boundary
surface of the organ. The interpolated object can then be displayed in graphics
applications or even manufactured by an NC (Numerically Controlled) or an RP
(Rapid Prototyping) machine. Another motivation for this problem is the non-
destructive digitization of objects: after an object is scanned by an echo-graphic
or an X-ray apparatus, the obtained slices are used for the reconstruction of the
original object. Yet another motivation is the reconstruction of a 3-dimensional

model of a terrain from topographic elevation contours.

Many solutions were suggested for the pure raster interpolation. These usually
handle two raster images, where each pixel is either white or black, or assigned
a gray-level taken from a fixed range. The interpolation produces one or more

intermediate raster images, which smoothly and locally turn the first image into
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Chapter 1. Background 4

the second one. Then, the bounding surface is detected using other methods,
such as edge detection techniques, for identifying places of transition from the
inside to the outside of the object. In the grey level case, these methods include
some thresholding mechanism that decides which levels are ‘inside’” the object and
which are not. Cline et al. [CLLCS88, LC87] attempted to convert the voxel data
directly into a polyhedral surface, suggesting the marching cubes technique, which
produced very small triangles whose size was roughly the same as that of the input

voxels.

Many other solutions assume that the interpolation is preceded by an edge-detection
process, which is invoked for each of the slices. Thus, each slice is then con-
sidered to be represented by a hierarchy of non-crossing contours, each being a
closed simple Jordan curve, which represent the boundaries between “material”
and “non-material” areas; in general, the depth and breadth of this hierarchy is
not restricted, and a contour may enclose any number of other contours, which
themselves may enclose other contours, and so on. In practice, each contour is
given as a discrete circular sequence of points along it, and we can thus regard
it as a simple closed polygonal curve, whose vertices are the given points. Fi-
nally, we may also assume that the exterior, unbounded region in each planar slice

represents “non-material” (the model is assumed to be bounded).

Thus, the problem is: Given a collection of planar cross-sections of an unknown
object, each consisting of a set of non-crossing, but possibly nested, closed and
simple polygonal curves, we want to reconstruct a polyhedral solid model whose
cross sections along the given planes coincide with the input slices. A popular
simplification of the problem, done in most works that handle collections of parallel
cross-sections, is to consider only a single pair of successive parallel slices, and to
construct a solid model within the layer delimited by the planes of the slices,
which interpolates between the given slices. The union (or, rather, concatenation)

of these models will give us a solution model for the full problem.

There has been intensive research on this problem in several “waves.” We provide

here only a brief survey of this history of research. Most of the earlier works
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only studied the variant where all the cross-sections are parallel, and each one of
them contains only one contour. These studies either sought a global optimization
of some objective function, or used a local tiling-advancing rule, after the tiling
starting points at the two contours were somehow determined, e.g., the closest pair
of vertices between the contours. Such solutions were proposed the seminal work
of Keppel [Ke75] and later in [BPCC81, CCLB80, FKU77, KD88, KSD88, SH81,
SP88, WA86, WWO93|. Then, a few works [CS78, CP94, EPO91, GD82, MSS91,
Sh81, ZJH&7] suggested methods for handling simple branching cases.

A new generation of algorithms attempted to handle the reconstruction problem
in much more generality, allowing (still parallel) cross-sections to contain any
number of contours and not assuming anything about their shape, resemblance,
and/or nesting hierarchy. Boissonnat [Bo88]| (see also [BG92, Ge93]) opened a new
era in the research of this problem, presenting the first algorithm that handles the
problem in this generality. He constructed the Delaunay triangulation for each
slice, projected one triangulation onto the other, and obtained a collection of

tetrahedra, aiming to maximize the sum of their volumes.

Barequet and Sharir [BS96] (see also [BST00, SSBTO01]) proposed another algo-
rithm that handles the problem in this generality. The algorithm is composed of
two steps. The first step matches similar portions of contours (using a geometric-
hashing curve-matching technique) between every pair of adjacent slices and tiles
each pair of matched subcontours by a sequence of adjacent triangles. The sec-
ond step identifies the remaining clefts between contours (unmatched portions of

contours) and triangulates them while optimizing some objective function.

Bajaj, Coyle, and Lin [BCL96| presented an algorithm similar in nature to that
of [BS96], but also provided a profound theoretical ground to the behavior of their
algorithm. They formalize the constraints imposed on the reconstructed surface
and prove rigorously the correctness of the reconstruction, that is, that the result
is a non-self-intersecting surafce. This is one of the rare algorithms which provide

a guaranteed running time. The time complexity of the algorithm is O(nlogn) in
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the average case and O(n?logn) in the worst case, where n is the complexity of

the input.

Barequet et al. [BGLS04] presented another efficient method for handling the
general reconstruction problem. The method is based on computing cells in the
overlay of the cross-sections that form the symmetric difference between them.
Then, the straight skeletons of the selected cells are computed, and then guide the
triangulation of each face of the skeletal cells. Finally, the resulting triangles are
lifted up in space to form an interpolating surface. This algorithm is somewhat
similar to that of Oliva, Perrin, and Coquillart [OPC96]. The latter algorithm is
different in the classification of cells, the triangulation scheme, and the method

for assigning heights to intermediate vertices.

The current trend is to remove the requirement that all input cross-sections be
parallel and that all contours represent a single type of material (tissue in med-
ical data). Payne and Toga [PT94]|, Dance and Prager [DP97], and Bogush et
al. [BT'S04] allowed cross-sections to be aligned in a few directions. Boissonnat
and Memari [BMO07], and Liu et al. [LBD+08] allowed cross-sections to be oriented
completely arbitrarily. They compute the arrangement of the planes supporting
the cross-sections, then subdivide each cell of the arrangement by using its medial
axis, project on this axis the portions of contours lying on the boundary of the
cell, match portions of the images of this projection, and reconstruct portions of

surface connecting matching portions of the original contours.

Only very few works dealt with the “multi-colored” case, in which the cross-
sections simultaneously describe several types of tissues (e.g., muscles, fat, bone,
blood, etc.), so that each contour is given a label that characterizes its type. For
such input, separate reconstructions based on each type of contours regardless of
the other types might result in inconsistencies and intersections between the re-
constructed surfaces. The methods of Ju et al. [JWC+05] and Liu et al. [LBD+08]
are among the few that support multi-colored cross-sections. Edwards and Ba-

jaj [EB11] handle the case in which contours of various colors are given in parallel
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cross-sections, however, the contours intersect within the sections. Such incon-
sistencies are handled by a so-called “intersection removal” algorithm. Bermano
et al. [BVG11] describe an on-line algorithm for reconstructing simultaneously
multi-colored object from arbitrarily-oriented, possibly partial, cross-sections. The

algorithm produces smooth results but is very slow in practice.

An additional desired feature is “partially defined” cross-sections, that is, sections
in which portions have the “unknown” label, resulting from areas scanned im-
properly or not scanned at all. Such a situation cannot be handled by all the
reconstruction algorithms described so far since in this case the cells of the ar-
rangement of the (portions of) planes are not convex any more. An algorithm by
Barequet and Vaxman [BV09] combines all the above-mentioned features plus the
ability to handle partially-defined sections. It employs the method of [BEGVO0S§]

for computing the straight skeleton of nonconvex cells.

All existing algorithms which reconstruct a multi-labeled object from its planar
cross-sections [BV09, LBD+08, BVG11] reconstruct all materials (including the
“air”) simultaneously while avoiding intersections during the reconstruction. In
contrast, we suggest to reconstruct the different materials separately. This provides
more flexibility and fewer constraints, and, thus, better and more reliable results.
However, intersections between the different materials may appear. Therefore, we
suggest a novel scheme for splitting fairly the regions of intersection between the

involved materials.

1.2 Statement of the Problem

We are given a set of arbitrarily-oriented partial planar cross-sections of an un-
known object O. Each cross-section contains a set of closed labeled contours. The
contours specify the intersections of the planes with the object, while the labels
represent the material types within these intersections. The goal is to reconstruct
O as a labeled triangulated mesh (or meshes), representing the boundaries of the

different materials of the object. A typical example is shown in Figure 1.1. The
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(a) Input

(b) Output

FiGure 1.1: Typical input and output in a multi-label reconstruction
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input is shown in Figure 1.1(a) (the cross-section planes are not displayed, but

only their intersection lines), and a possible output is shown in Figure 1.1(b).

As detailed in the introduction, very few published algorithms attempt to inter-
polate simultaneously between several types of polygons, so-called “labeled” or
“colored” contours. An inherent problems of all these algorithms is the “coor-
dination” between the different reconstructions. A simple approach would be to
interpolate each type of material separately, and then merge all interpolated vol-
umes into one data set. This approach is prone, however, to intersections between
the different interpolations. Ideally, the coordination between them should be an
integral part of the algorithm, handling each type of contours while being aware

of the other types.

Let us exemplify the problem through a simple but typical example. All existing
algorithms, that handle nonparallel cross-sections with multi-labeled contours, first
compute the arrangement of planes supporting the sections, and then interpolate
separately within each cell of the arrangement. Figure 1.2 shows a simple synthetic
example, in which a cell of the arrangement is shaped like a box, having contours
of one type (red in the figure) on the top and bottom faces of the cell, and contours
of another type (green) on the left and right of the cell. Figure 1.2(a) shows typical
reconstruction produced by the algorithms suggested in [BV09, LBD+08]. Both
algorithms compute the three-dimensional straight skeleton of the cell, project
the contours on the facets of the skeleton, and reconstruct separately within each
skeletal cell. This implies that the non-material regions (the “air”) is weighted
equally to the real material types. The algorithm of [BVG11] is on-line in nature.
It defines spatial functions based on the input contours and looks for the zero
level set of the functions. Therefore, it generates output which is similar to that of
both previous algorithms. A more natural reconstruction would be the one shown
in Figure 1.2(b), accompanied by a fairing mechanism to handle the region of
intersection between the reconstructions of the two material types. Obviously, the
problem becomes much more complicated when there are many contours of each

type, with more complex shapes and topologies, and especially when there are more
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(a) Erroneous (b) Desired

FI1GURE 1.2: A typical problem in reconstructing from multi-label contours

than two types of material, making the interactions between the reconstructed

surfaces much more complex and involved.

The synthetic example above also shows a problem inherent to all skeleton-based
reconstruction algorithms: The introduction of skeletal faces, which results in
subdividing every cell of the arrangement of planes (supporting cross-sections) into
skeletal cells, disconnects contours of the same type that should be interpolated
together. This is seen clearly in Figure 1.2(a), in which the two red contours lie in
two disconnected skeletal cells. In addition, the reconstruction of the red material
is cut in an unnatural way that depends on the location of the red contours relative
to the skeleton. The same figure also shows an unnatural connection between the

green contours.
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The Algorithm

2.1 Basic Solution

Our strategy for dealing with “contradictions” caused by intersecting reconstruc-
tions of multiple types of material will be to interpolate each type separately, then
apply a fairing mechanism for splitting the intersection volume(s) between the
competing types. For example, the small volume in Figure 1.2(b), that is the in-
tersection between the red and the green reconstructions, will be either associated
completely to one of the colors, or split between them according to some scheme.
To this aim we suggest a set of splitting and fairing rules, some of which are logical,

quantitative, or geometric.

The algorithm proceeds as follows:

1. Construct the arrangement of the planes supporting the cross-sections.
2. Compute the subreconstruction for each label in each cell of the arrangement.
3. For each cell of the arrangement:

(a) Subtract the regions of conflict (intersections) from the subreconstructed

meshes. Also subtract the corresponding faces (or partial faces).

(b) For each connected component of the intersection regions:

11
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i. Set weights and labels to its faces.
ii. Compute the weighted straight skeleton.
iii. Identify the two labels corresponding to each skeletal face, and
select the faces with two different labels.
iv. Triangulate the selected skeletal faces and associate them to the

appropriate subreconstructions.

(c) Join the triangles from Steps 3(a) and 3(b.iv).

4. Join all the generated triangles into closed volumes.

2.2 Details of the Algorithm

In this section we provide more details of the algorithm. Steps 1 and 2 are standard
and are not specific to our algorithm. For Step 1 we complete partial planes
and then compute their arrangement as in [BVG11]. For Step 2 we take any
reconstruction algorithm available for nonparallel planes, e.g., those of [BMO07,
BTS04, DP97, PT94]. Figure 2.1(a) shows a sample cell with contours of three
colors, input to one application of the algorithm, while Figure 2.1(b) shows the

three individual subreconstructions of each colored material separately.

2.2.1 Fairing rules

The user may apply several fairing rules in order to resolve intersections between
the reconstructions of the different material regions. Our system allows the user
to set static rules in advance, or to fix them interactively during the course of the
algorithm. In the latter case, the user may apply different rules to different cells

of the arrangement of planes.

Possible fairing rules include the following;:

1. Material of a specific type can stay as-is, that is, annex all regions of inter-

sections with other types of material. See Figure 2.1(c) for an example.
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(b) Reconstructions
(a) Labeled contours

(c) Blue remains as-is

F1GURE 2.1: Typical input to the algorithm

2. A special treatment can be assigned to tunnels, that is, volumes surrounded
by another non-zero-genus volume. Again, tunnels can be chosen to stay
as-is (irrespective of which material they are in), or assigned weights (see

Rule 4) that are different from their regular weight.

3. Optionally, material types can be prioritized in order to resolve ties in cases
where two or more intersection materials (or tunnels, due to the previous
rule) are chosen to stay as-is. If ties are not resolved by priorities, then their

intersection region(s) are subject to the last fairing rule.

4. Materials of different types can be associated with weights to be used for de-

termining the split of an intersection region between the involved materials.
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(By default, all material types are associated with equal weights.)

While all rules are geometric in nature, aiming at splitting regions of intersection
fairly between the involved material types, some of the rules also have a topological
flavor: Imagine a blood vessel going through a muscle; one would not want the
blood vessel to break into two disconnected pipe-like pieces, in which case Rule 2
would be applied. As another example, a bone is stiffer than a muscle that is
intersecting it, therefore giving the bone a weight higher than that of the muscle
will almost surely keep the original shape of the bone while the muscle will bend

around the bone. Therefore, Rule 4 would be applied in this case.

We could define general tools that are global in the sense of sharing information
between different cells. For example, a material which is involved in a high number
of intersections in different cells of the arrangement may be associated with a low
weight or may be reconstructed with another algorithm. This is one of the very
few times in the history of algorithms suggested to solve this problem, in which a

global treatment within each cell is considered.

2.2.2 Subtracting regions

In case a material is to remain as-is, and this requirement is not challenged by
an intersection with another material with the same property (and with the same
priority), all intersections of this material with other materials are subtracted from
the other materials and annexed to the former material. Figure 2.1(c) shows the
reconstruction in this case when the blue material remains as-is. This example is

less interesting and is, thus, not worked out here.

On the other hand, intersection regions that are not resolved by the simple priority
rules, are subtracted from the involved materials and become subject to the last
fairing rule, which is the main step of the algorithm. All the intersection regions (of
two or more of the subreconstructions) are subtracted, and then united into one or
more connected volumes that should be split fairly between the subreconstructions.

Figure 2.2(a) shows, for example, three intersecting subreconstructions (red, blue,
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(a) Subtraction of volumes (b) Triangulated regions

FIGURE 2.2: Subtracting conflict areas and triangulation

and green) after subtracting the intersection region. Since the boundary of an
intersection of volumes, bounded by triangulated meshes, may consist of more

complex faces, we triangulate all the newly created faces (see Figure 2.2(b)).

Our implementation takes special care to orient all the triangles appropriately
(so that every volume will be described by a properly-oriented boundary) and
to match them correctly (so that the interface between neighboring volumes will

consist of oppositely-oriented, but otherwise identical triangles).

2.2.3 Processing intersection regions

This is the main ingredient of the algorithm. The goal of this step is to divide
fairly the intersection regions (or volumes) into portions, associate an appropriate
label to each portion, and, finally, to merge these portions with the original sub-
reconstructions. Needless to say, each portion of the conflict region(s) should be

connected to the subreconstruction from which it originated.

First, every face of an intersection region is labeled by the (unique) material that
contributed it. Figure 2.3(a) shows the intersection region of the three colored ma-
terials corresponding to the subreconstructions seen in Figure 2.1(b). Figure 2.3(b)
shows another view of this intersection. Figure 2.3(c) shows the intersection region

that would be created between the red and the blue materials if we took the green
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(a) Three subreconstructions (b) A different view of (a)

(¢) Two subreconstructions

FIGURE 2.3: Coloring the faces of the conflict (intersection) regions

material as-is, and, hence, subtract it from the conflict region. The weight of the

face is set according to the corresponding material and the applied rule.

Second, the straight skeleton of the 3-dimensional intersection region is computed
by using the algorithm of [BEGV08]. We use a weighted version of the algorithm,
where the weight of the faces of the region are set as explained above. In practice,
this means that every face “moves” in a different speed; a higher velocity of a face

implies that the face grabs more swept volume of the interior of the intersection
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el
it
A\
Z X
(a) Three subreconstructions (b) Two subreconstructions

FIGURE 2.4: Straight skeletons of intersection regions

(a) Before triangulation (b) After triangulation

FIGURE 2.5: Skeletal faces and their triangulations

region. Thus, the higher the weight of a face is, the bigger the volume of the
respective portion of the intersection region that it grabs is. Figures 2.4(a,b) show
the straight skeletons of the two intersection regions displayed in Figures 2.3(a,c),

respectively.

Now, every skeletal cell is defined by exactly one labeled face of the intersection



Chapter 2. The Algorithm 18

region. Moreover, each skeletal face is shared by exactly two neighboring skeletal
cells, so as a third step we mark each skeletal face with the pair of labels of the
defining faces of its two neighboring cells. We pick only skeletal faces that are
marked with two different labels since these will split the conflict region into the
different types of material. The skeletal cells are now annexed to the different
materials according to their associated labels. The skeletal faces that bound them
inside the conflict region are duplicated, in two opposite orientations. The two
copies of these faces are added to the boundaries of the materials, respective of
the two labels. Consider, for example, Figure 2.5. Figure 2.5(a) shows the selected

skeletal faces that correspond to the example shown in Figures 2.3(a) and 2.4(a).

There is one degenerate case in which faces of different subreconstructions, that
also contribute to their intersection, overlap or partially overlap in space. In this
case the material which contributes a face of the boundary of the intersection
region is not defined. To make the algorithm accommodating this case, we do not
assign a label to the face, and give it the weight 0. As is shown below, this solves
the degenerate case. For example, note the marked face in Figure 2.4(b) (or the

white faces in Figure 2.3(c)).

Fourth, the skeletal faces are triangulated in order to obtain triangulated meshes.
For example, consider again Figure 2.5. Non triangular faces in Figure 2.5(a) are
triangulated, and the result is shown in Figure 2.5(b). The displayed surface will

split the conflict region between the three material types.

Finally, all the triangles generated in Steps 3(a) and 3(b.iv) of the algorithm
are collected—they form the new boundaries of the different types of material,
after splitting fairly all the regions of intersection. Figure 2.6(a) shows the final
result of the example worked out above, when all three colors have equal weights.
Figure 2.6(b) shows the final result of this example when the green material is

chosen to stay as-is, and the red and blue materials have equal weights.

To emphasize the effect of the weights and the intersection shape, we provide a
simple example of a conflict region in which we experimented with different weights

and subreconstructions. Figure 2.7(a) shows a sample cell of the arrangement
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(a) Equal weights (b) Green stays as-is

FIGURE 2.6: Final reconstruction after fair splitting

of cross-sections, with green and blue contours, while Figure 2.7(b) shows their
two respective intersecting subreconstructions. Figure 2.7(c) shows different splits
between the two colored materials, depending on the ratio between the respective
weights. Note the continuous change of the split in this sequence. Figure 2.7(d)
shows different splits between the fixed green subreconstruction and a gradually
growing blue subreconstruction. In this example, the materials were associated
with equal weights. When the relative sizes of the subreconstruction are given
(in a particular input), the user may choose the associated weights, and both
parameters affect the split of the conflict region. A combination of these given

and user-defined factors will lead to a fair final reconstruction.

We conclude this section by proving that the fair-split algorithm preserves the
connectivity of the original subreconstructions, unless there are tunnels that are

not treated by the appropriate fairing rule.

Theorem 2.1. Labeled portions, created by splitting an intersection region, are

connected to the respective subreconstructions.

Proof. Each boundary face f of a conflict (intersection) region C' has a label that
was originated by a subreconstruction R with the same label. Tt is known [BV09]
that while computing the 3-dimensional skeleton of C', the volume swept by f is
continuous (moreover, it is monotone), and that f is part of its boundary. Thus,

the portion of C', respective of f, is precisely the skeletal cell that contains f on
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its boundary. Hence, after uniting all such portions with R, the subreconstruction
containing f on its boundary (in an opposite orientation), and canceling out these

two copies of f, we obtain a connected region.

Note that R can be broken into k > 1 parts after subtracting C'. In this case, there
will be k surfaces patches (that originated from R) on the boundary of C', thus,
having the same label as R. These k£ patches will result in £ skeletal cells which
will further be merged into the respective k parts of R. However, disconnection
can only be caused by other subreconstructions whose intersection with R breaks
it into more than one part. This means that we have a tunnel (or tunnels), which

can be treated simply by the tunnel-fairing rule.

It remains to prove the claim for the degenerate case, in which a face f bounding
C' is contributed by several subreconstructions. In this case we do not label the
face, and assign it the weight (velocity) 0. The effect of this modification is
that f does not grab any portion (skeletal cell) of C' at all, while some other
portions of C' extend all the way and touch f. Refer, for example, to R, one of
the subreconstructions that contributed f. If no other portion of C', labeled as
R, touches f, then R simply loses all its portion of the conflict region to other
subreconstructions, and no discontinuity is created. On the other hand, if another
portion of (', labeled as R, extends all the way and touches f, this means that
locally no discontinuity was introduced either; on the contrary—this part of R now
became connected to another part of R, through a skeletal cell swept by another

face labeled by the same color as R. [



Chapter 2. The Algorithm

21

(¢) Varying weight  (d) Varying intersection shape

FIGURE 2.7: The effect of different weights and intersections






Chapter 3

Results

3.1 Implementation

In this section we start by presenting in detail the way in which we created the
inputs of the algorithm. Then we follow by describing our implementation of the

various reconstruction algorithms and the algorithm for dealing with conflicts.

3.1.1 Input generation

To test our algorithm with real data, we computed cross-sections of a few human
organs by cutting existing three-dimensional data. Then, we applied an algorithm
similar to that of [BMO07] for reconstructing each individual material, ran our
fairing algorithm, and finally compared our results with the original organs and

with the results of the algorithm in [BV09].

For generating the inputs to our algorithm, we used various human organs, most

of which taken from http://www.zbrushcentral.com/showthread.php?7169189 .

This database includes a 3D model of a full body male. It has just about every mus-
cle group, every bone and almost all organs. Figure 3.1 shows some internal organs
obtained after filtering the database. Since the original scanning was usually done
in a high resolution, we simplified the meshes by using the quadric edge-collapse

23
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(a) Internal organs (b) Another set of internal organs

F1GURE 3.1: 3D model of a full body male

decimation technique to obtain meshes with fewer triangles, which still described
clearly the original organs. We then sampled a few organs (see Figure 3.2 and
Figure 3.8(a)) and computed a few cross-sections of them. Figure 3.3(a) shows
a heart while Figure 3.3(b) shows the contours on one cross-section of it. Fig-
ure 3.3(c) is an example of a cross-section of lungs, while Figure 3.3(d) includes
three cross-sections of both lungs and a heart, two of which are parallel and the
third is orthogonal to them. Figure 3.3(e) includes some parallel cross-sections
of both a stomach and a liver (see Figure 3.2(a)), while Figure 3.3(f) contains a
few more parallel cross-sections of the same organs. Sometimes these contours
intersect. Figure 3.4(a) shows parallel cross-sections of four organs: a rib cage

(blue), lungs (green), a heart (red), and a soft tissue that connects the front side
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(a) Liver (blue) and stomach (red)

(b) Lungs (blue) and ribs (red)

(c) Bone (blue) and muscle (red)

FiGure 3.2: Full reconstructions of organs
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(a) A full heart (b) Heart (cross-section)

(¢) Lungs (cross-section) (d) Heart and lungs (cross-sections)

(e) Liver and stomach (cross-sections) (f) Another set for liver and stomach (cross-sections)

FIGURE 3.3: Cross-sections
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(a) Parallel cross-section of four organs

(b) Two parallel cross-sections (c) A different view of (b)

(d) Zoom-in into (b)

FIGURE 3.4: Input intersections



Chapter 3. Results 28

of the lungs with the rib cage (magenta). Figures 3.4(b—c) show a close-up of two
median cross-sections in different views, and Figure 3.4(d) shows the intersection
of the magenta and green contours. We then solved these 2D intersection in a
manner similar to that in the 3D case, using the 2D weighted straight skeleton,
and finally we merged close vertices of the obtained contours to prevent numeric

issues.

3.1.2 Reconstruction

We obtained from Pooran Memari a piece of code which implements the algorithm
in [BMO07] in order to reconstruct each individual material. We extended it in
order to implement our final reconstruction algorithm. We have implemented the
reconstruction algorithm of [BV09] in order to compare our results with its results.
First, this algorithm computed the arrangement, then, it computed the straight
skeleton of each cell of the arrangement, and, finally, it projected the contours

orthogonally into the skeleton’s faces and connected them.

3.1.3 Intersections

We have used the CGAL library [CGAL] in order to evaluate the boolean opera-

tions. The algorithm proceeds as follows:

1. For each cell of the arrangement, compute the connected regions of intersec-

tions:
1.1 Compute intersection volumes between each two materials.

1.2 Unite the volumes.

2. For each connected region of intersection:
2.1 Subtract this volume from the involved materials.

2.2 Split the intersection region between the involved materials.
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The algorithm which implements the weighted straight skeleton proceeds as fol-

lows:

1. Compute the candidate vertices of the straight skeleton.
2. Filter the vertices.

3. Compute the faces of the skeleton.

3.2 Experimental Results

In this section we present results obtained by applying our algorithm on synthetic

and real inputs.

3.2.1 Synthetic examples

We provide another more complex synthetic example which emphasizes our new
ideas. Figure 3.5(a) shows the input to the algorithm. Figure 3.5(b) shows
the reconstruction of both algorithms in [BV09] and [LBD+08]. (The algorithm
of [BVG11] generates a similar result.) Note the discontinuity of the different
materials. We have used the algorithm of [BMO7] to reconstruct each individual
material; the result is shown in Figure 3.5(c). Figure 3.5(d) shows the generated
conflicts, manifest in two little intersection regions. Figures 3.6(a—c) show the
first (bigger) intersection in orientations that reflect the “points of view” of the
subreconstructions of the involved green, red, and magenta (after subtracting the
conflict region). The left figures show the intersection faces and their associated
labels. The middle figures show the skeleton faces when equal weights were given
to all the materials. Note that each face defines one monotone cell. Finally, the
right figures show the selected skeleton faces, that is, faces shared by cells with
different labels. Figure 3.6(d) shows the second intersection region. The left fig-
ure shows the faces and their associated labels (green and blue), while the right

figure shows the intersection with inner selected skeleton faces (shown in gray).
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W

(a) Input (b) Output of [BV09]

)

L4

(c) Our output (d) Intersections

F1GURE 3.5: A synthetic example
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) First intersection: red view

W\

) First intersection: magenta view

>

Second intersection

FIGURE 3.6: Intersection treatment
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a) Origin ) Subtraction ) Result
d) Origin ) Subtraction ) Result
g) Origin ) Subtraction ) Result
j) Origin ) Subtraction ) Result

F1GURE 3.7: The modified regions
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Figure 3.7 shows the modified regions. For each material, the figure first shows
the original shape, then the faces (or partial faces) after subtracting the intersec-
tion faces, and finally, the result after combining the selected skeleton faces, where
each face shared by two cells is duplicated and combined with both appropriate
materials. The final result is quite similar to the one shown in Figure 3.5(c); it was
omitted because it is hard to notice the difference between the geometries before

and after applying the algorithm.

3.2.2 Real examples

We also provide one real example. We generate the input as discussed in the
sub-section 3.1.1. Figure 3.8(a) shows two simplified organs, a soft tissue (in blue)
curling around part of a pelvis (in red). The yellow ellipse surrounds a region
around which we computed six cross-sections. Figures 3.8(b,c) show the labeled
contours on these cross-sections. Figure 3.9(a) shows the arrangement cell and the
input labeled contours. Figure 3.9(b) shows the inner subreconstructions. The
conflict regions are marked with yellow ellipses. Figure 3.9(c,d) show, for each of
the top and bottom conflict regions, the triangles which define it (left figure) and

the intersection region with its associated labels (right figure).

Figures 3.10(a—c) show the original individual reconstructions, while Figures 3.10(d-
f) show the result after splitting fairly the intersection region between them. Note
that if we assign priorities which favor the pelvis, then the faired reconstruction
will converge to the original shapes, resulting in the blue tissue bending around
the red one. Figure 3.11 shows the effect of different weights on the bottom region
of the soft tissue. For clarity, we colored the portions of the original modified faces
with cyan and the skeleton faces with magenta. Note also that we did not apply
any post-processing step (e.g., smoothing). Figures 3.10(g-i) show the reconstruc-
tion of the algorithm in [BV09] (which is identical to the result of [LBD+08] and

similar to the result of [BVG11]) before triangulation and smoothness.
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(a) Soft tissue (in blue) curling around part of a pelvis (in red)

(b) Front view (c) Side view

Cross-sections and their labeled contours

FIGURE 3.8: A real example
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LA 4

a) Input ) Subreconstruction

MM

) Bottom
Intersection regions

FI1GURE 3.9: Real example: Intersections
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) Part of a pelvis ) Soft tissue ) Another view
Initial subreconstructlons

) Part of a pelvis ) Soft tissue (f) Another view

Final subreconstructlons

) Part of a pelvis ) Soft tissue (i) Another view

Subreconstructions of [BV09]

FIGURE 3.10: Results
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(a) 10:1 (b) 2:1 (c) 1:1 (d) 1:2 (e) 1:10

FIGURE 3.11: The soft tissue (blue) with varying weights (blue:red)






Chapter 4

Conclusion and Future Work

4.1 Summary and Discussion

In this thesis we suggest an algorithm for reconstructing an unknown object from
multi-labeled contours. The algorithm reconstructs each type of material sepa-
rately (using any existing method), then splits the intersection regions in a fair

manner.

Although our algorithm is generic and could combine different algorithms for re-
constructing each individual material, and although this underlying problem is
much easier and potentially could generate a reasonable results, only a few al-
gorithms were suggested. Moreover, they still suffer, in some cases, from bad

portions, such as flat regions and thin skinny triangles in their final results.

4.2 Future Work

The main draw back of the algorithm is the computation of the weighted straight
skeleton and it’s running time complexity. We would like too see how standard

collision detection techniques affect the results.

39
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